Table of Contents
Full text of “Radiological health handbook”
PHS pub. i no. 2016i 1970 U. S. DEPARTMENT OF HEALTH. EDUCATION. AND WELFARE Public Health Service Trade names of commercially available products used in this publication implies neither endorsement of the product by the Public Health Service nor the unavailability of other suitable products. This publication contains copyrighted material. Further reproduction of such parts without permission of the author and publisher is prohibited. RADIOLOGICAL HEALTH HANDBOOK Compiled and edited by the Bureau of Radiological Health and the Training Institute Environmental Control Administration Revised Edition January 1970 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Consumer Protection and Environmental Health Service Rockvi I ie, Mary land 20852 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $4.00 FOREWORD Twenty years ago the Public Health Service developed the first Radiological Health Handbook as a training aid, and it has since become a basic reference and a major resource for professional personnel and students in the field of radiological health. Credit for the development of the Handbook goes to members of the radiological health training staff, who through the years compiled and revised the information and data included in the book. New knowledge, new technological advancements, and the enactment of Public Law 90-602, "Radiation Control for Health and Safety Act of 1968," made the last edition outdated and inadequate. In 1968, Mr. James G. Terrill, Jr., then Director, National Center for Radiological Health, initiated revision of the Handbook. Suggestions for additions, corrections, and deletions were obtained from Handbook users across the United States and in a number of foreign countries. An advisory committee, representative of major programs in the Bureau of Radiological Health, helped select the content for the revised edition, and a number of the Bureau's technical programs provided new data which are reflected in some of the charts and tables. Mr. John E. Munzer and Mr. Ralph E. Bunge of the training staff assumed major responsi- bility for work on the revision. The present text includes information unavailable ten years ago: a new chart of the nuclides, a universal decay table in place of individual isotope listings, microwave and laser glossa- ries, film-speed charts, depth-dose tables, and a "rules of thumb" section. Although contributions from individuals and organizations are too numerous to list in detail, appreciation is expressed to all who made suggestions, provided material, and permitted the reprinting of data as acknowledged in the Handbook. iii Mr. John C. Villforth, Director Bureau of Radiological Health Mr. George R. Shultz, Director Training Institute TABLE OF CONTENTS Section Page FOREWORD iii I. PHYSICAL, CHEMICAL, AND MATHEMATICAL DATA 1 II. RADIOISOTOPE, DECAY, AND RADIOASSAY DATA 86 III. RADIATION PROTECTION DATA.o 129 IV. TABLE OF ISOTOPES Table 1 219 Table II 381 V. GLOSSARY. . 413 % VI. INDEX... ..449 V I SECTION I PHYSICAL, CHEMICAL, AND MATHEMATICAL DATA Page SIGNS AND SYMBOLS Mathematics and Greek Alphabet 1 Alphabetically by Name 2 Alphabetically by Symbol 7 CONSTANTS 11 CONVERSION FACTORS 15 EQUATIONS 26 MATHEMATICAL TABLES Squares and Square Roots 36 Values and Logarithms of Exponential Functions 41 Trigonometric Functions 45 Logarithms, Natural 46 Logarithms, Common 48 ELECTROMAGNETIC SPECTRUM 50 ATOMIC MASS TABLE (including binding energy) 51 DENSITY OF ELEMENTS AND COMMON MATERIALS 65 PERIODIC TABLE OF THE ELEMENTS 67 List of Elements 68 CHART OF THE NUCLIDES 69 SIGNS AND SYMBOLS Mathematics + ± T ().[] < cc 00 plus, addition, positive minus, subtraction, negative plus or minus, positive or negative minus or plus, negative or positive divis ion multiplication collection equal to not equal to identical to equals approximately, congruent greater than not greater than greater than or equal to less than not less than less than or equal to proportional to ratio similar to varies as, proportional to approaches inf inity therefore / square root nth root a“ nth power of a a"° reciprocal of nth power of a, = 1/a" log,logio common logarithm ln,logg natural logarithm e, € base of natural logs. 2.71828183. .. n pi, 3.14159265. .. L angle _L perpendicular to 11 parallel to n any number 1 1 absolute value of n n average value of n o n n degrees n’ n minutes, n feet n” n seconds, n inches f(x) function of x Ax increment of x dx differential of x Z summation of sin sine cos cos ine tan tangent GREEK ALPHABET A a Alpha I 1 Iota P p Rho B Beta K K Kappa 2 a Sigma r y Gamma A X Lambda T T Tau A 8 Delta M M Mu T V Upsilon E e Epsilon N V NuPhi Z f Zeta 2 Xi X X Chi H V Eta 0 0 Omicron 'P Psi 0 e Theta n IT Pi n u Omega 1 SIGNS AND SYMBOLS ALPHABETICALLY BY NAME about ca absolute abs absolute temperature (Kelvin) __ K absorption coefficient, energy, for air = r + k + absorption coefficient, linear, effective or apparent p absorption cross section in barns 0"^ acceleration, linear a activation cross section in barns Cac activity, original Aq alkali alk alpha 0! alpha particle a alternating current a.c. ampere A, amp. angle between incident and scattered radiation 6 angstrom A anno (year) a aqua aq. aqueous aq. approximately ca area A, total cross section in barns a ^ universal gas constant R velocity of light in vacuum c velocity, linear or particle v watt W wavelength X weber Wb weight wt. work W work function year (anno, annum) SL,yr Prefixes deci (= 10 ") d deka (= 10) da centi (= 10 c hecto (= 10®) h mill i (= 10 m kilo (= 10®) k micro (= 10'®) M- mega (= 10®) M nano (= 10'®) n giga (= 10®) G pico (= 10 ^^) P tera (= 10^®) T f emto (= 10'^®) f atto (= 10'^®) 6 SIGNS AND SYMBOLS ALPHABETICALLY BY SYMBOL a acceleration, linear; anno CGS A (year) ; atto (prefix) ampere; area; atomic mass chem. number; radioactivity cir. A angstrom c .m. abs absolute cm a. c. alternating current 2 cm alk alkali 3 cm amp. ampere (use A) coef. amu atomic mass unit-- 0 colog (old) [use u) activity, original cone Aq aq • aqua; aqueous, water const. asym. asymmetrical cos at.no. atomic number cpm a t. wt. atomic weight cu. at, atmos atmosphere (atmospheric) cu.cm, cu. f t. av, avg. average cu. in. b barn; buildup factor cu.m. bar. barometer cu. yd. BeV billion electron volt cwt Bi biot cyl. b.p. boiling point d Btu British thermal unit c velocity of light in D vacuum; centi (prefix) ; C curie (old) [use Ci) capacitance; Celsius; da centigrade; concentre- dB tion; coulomb DE ca about; approximately; DF circa cal calorie dil cc cubic centimeter dpm cd candela dyn cfm cubic foot per minute e centime ter -gram- second system chemical; chemistry circular circular mill centimeter square centimeter cubic centimeter coefficient cologarithm concentrated constant cosine counts per minute cubic cubic centimeter cubic foot cubic inch cubic meter cubic yard hundredweight cylinder day; deci (prefix) ; densi general; deuteron; dis- tance, linear density, film; deuterium; dose; absorbed dose deka (prefix) decibel dose equivalent decontamination factor; distribution factor dilute disintegration per minute dyne base of natural logarithm E linear energy S electric field intensity e,e electron; negatron e electron; beta particle; + o e ,+i e positron f femto (prefix) ; frequency F farad; fahrenheit; force Fr franklin G gravitational constant; gauss; giga (prefix) GeV giga electron volts G.I. gastrointestinal h Plank constant; hecto (pre- fix); height; hour H henry hv photon energy; quantum HVL half value layer Hz hertz I intensity of radiation Iq initial intensity insol. insoluble J joule k Stef an-Boltzman constant; kilo (prefix) K kayser; Kelvin; absolute temperature K.E. kinetic energy kg kilogram kVp kilovolt peak kVcp kilovolt constant potential kW kilowatt kWh kilowatt-hour 1 length; liter 1 mean free path lb. pound LD50 median lethal dose LET linear energy transfer lim limit 1 in liq liquid In natural logarithm log logarithm logg logarithm to the base e; natural, hyperbolic or Napierian logarithm logio common logarithm; logarithm to the base 10 m mass; meter; milli (prefix) minute nie rest mass of electron tnn mass of the hydrogen atom mass of the neutron 3 CO -Q 1 1 1 1 1 1 1 1 mass of the proton m square meter 3 m cubic meter M mega (prefix) max maximum mb millibarns med. medium MeV megaelectron volts tng milligram min minute MKSA me ter -kilogram- second- ampere system ml milliliter mm millimeter mm square millimeter 3 mm cubic millimeter mol mole; molecule mol. wt. molecular weight mole gram-molecule weight m.p. melting point MFC maximum permissible concen- tration MPD maximum permissible dose mu mass unit 8 Mx maxwe 1 1 mp, millimicron (use nano) n nano (prefix) °n neutron N neutron; neutron number; newton; number; numeric Avogadro constant; number no. number RPG Radiation Protection Guide rpm revolutions per minute s distance, linear; second; soluble S observed standard deviation SFD source-to-f ilm distance sol. soluble SSD source-to-skin distance Nq number of radioactive atoms at zero time; number, original Oe oersted oz ounce p momentum; pico (prefix) ; pressure P poise PAG Protective Action Guide P.E. potential energy p.f. power factor precip., pptd precipitated pt. point; pint q maximum permissible radio- nuclide body burden (i,Ci Q electric charge; energy; quantity; reaction energy in MeV QF quality factor r radius; radial distance; roentgen (old) R range (radiation); rate. count; resistance; roentgen; universal gas constant; radius, nuclear rad radian, measure of angle RBE relative biological effec- tiveness RCG Radioactivity Concentration Guide Rd rutherford (obsolete) radio frequency s.t.p. standard temperature and pressure t temperature, general; time; ton T temperature, absolute; tera (prefix) ; tesla Tjj half-life, biological Tgjj half-life, effective Tj^ half-life, physical 1 2 u atomic mass unit-- C V potential; potential drop; volt; volume V velocity, linear or particle W watt; work Wb weber wt. weight X absorber thickness Z atomic number a alpha; alpha particle 3,3'',-i3 beta; beta particle 3^ 5+1 3 positron 7 gamma ; gamma ray A finite increment 6 electron capture; di- electric constant 6 angle between incident and scattered radiation K pair production coefficient X decay constant; wave length X mean free path rf 373-062 0 - 70 -2 9 biological decay constant M< absorption coefficient, effective or apparent, linear; micro; micron (prefix) M-a T + /c + = energy absorp- tion coefficient for air )Jjbar microbar M -25 3 10 cm 5 Zeeman splitting constant e/4TTmc = 4.668 58 lO^ra'^T’^ 4 e/4TTmc^ = 4.668 58 10"^cm’^G“^ 4 11 CONSTANTS - -Continued Quantity Value (±) MKSA CCS Planck constant h = 6.625 6 5 10 J s 10”®'^ erg s h/2n = ft = h/e = h/e = he/ e = 1.054 50 7 4.135 56 12 1.397 47 4 4.135 56 12 10 J s 10~^^J s C"^ 10 ®^erg s 10 erg s esu 10 "^erg s emu ^ h/k = 4.799 3 6 10"^^ s °K 10-"" s °K 1st radiation constant Cl = 2TThc^ = 3.741 5 3 10“^ 1 n-5 2 -1 10 erg cm s 2nd radiation constant Cg = hc/k = 1.438 79 19 10"^m °K cm °K Wien's radiation law = Cs/4.965 U4 23 = 2.897 8 4 10"^m °K 10“" cm °K Stef an-Boltzmann constant o = 5.669 7 2 9 10"®W °K"^ 1 -2 -1 10 erg cm s Ok-4 fine structure constant O' = 7.297 20 10 10'^ 10"^ = 1.370 388 19 10^ 10^ = 5.324 92 14 10“® 10"^ Bohr radius ao = 5.291 67 7 10“^^m 10 ^ cm Rydberg constant = 1.097 373 1 3 lO'^m’^ 10^ cm " Rh = 1.096 775 8 3 1 -1 10 m 1 o5 -1 10 cm R c = 00 3.289 842 4 10^^ s"^ 1^15 -1 10 s R he = 00 2.179 72 17 10"^® J 10 ""erg 12 CONSTANTS --Continued Quantity Bohr magneton M'S magnetic moment of electron M- e nuclear magneton M-n magnetic moment of proton = gyromagnetic ratio of proton Yp = Value (±) 9.273 9.284 1.001 5.050 1.410 2.792 2.675 2 6 0 6 159 615 15 5 4 49 13 76 7 19 2 MKSA 10 T ^ 10 T ^ 10 T ^ 10 T ^ 10® s ^T ^ CCS 10 ^^erg G ^ 10 ^^erg G ^ 10 ^^erg G ^ 1 r\~~ 2 3 /I 1 10 erg G 10^ s ^G ^ Compton wave lengths: of electron of proton of neutron Xce “ h/mg Xr / 2 TT = ^Cp = ^Cp/2TT = ^Cn = h/m^c ^ Cn / 2 TT 2.426 3.861 1.321 2.103 1.319 2.100 21 6 44 9 40 4 07 6 58 4 18 1 r>-12 10 m 10 ^^m 10 ^^m 10 ^®m 10""^m 10-"% 1 n-lO 10 cm 10 " " cm 1 A-i 3 10 cm 10 "“"cm 1 a- 13 10 cm "\ r\ 10 cm Avogadro constant N. = molar volume of ideal gas at s. t .p. molar gas constant = R = Faraday constant F = N^e F = N^e A F/c = N^e/c 6.022 2.241 8.314 1 9.648 2.892 9.648 52 28 36 30 3 2 70 16 61 5 70 16 -1 3 -| 1 10 mol -1^23 -1 1 10 m mol T 1-1 Otr-l J mol K lO^C mol " -T /~.2 3 1 1 10 mol 1 3 1-1 10 cm mol 10”^erg mol "°°K " lo"^esu mol " 10® emu mol " ! 3 CONSTANTS - -Continued Quantity curie Ci base of natural logarithm e = gravitational acceleration g pi roentgen energy equivalent of electron mass me wave-length associated TT = R = 2 _ with 1 eV ratio of chemical to unified mass scales r = M(0 = 16)/M(^^C = 12) r = M(^®0 = 16)/MC-^C = 12) = 12 ^ _ mass unit, unified mass scale u = 1/N, = Value (±) MKSA 3.7Xl0^°dps 2.718 281 828 4 9.806 65 -2 m s 3.141 592 653 59 2.58X10“^C kg"^ 0.51 MeV 1.239 81 10 ^m 1.000 043 5 loOOO 317 92 2 1.660 43 lO'^’^kg CCS 10^ cm s ^ 10 ^ cm 10"^^ g 14 CONVERSION FACTORS AREA Multiply # of — by — ► to obtain # of to obtain # of ■*— by ^ Divide # of barns 10"®^ 3 cm circular mils 7.854X10"'^ 3 in. 2 cm 10®^ barns 3 cm 0.1550 in .® 3 cm 1.076X10"® ft® cm^ 1 o m® ft^ 929.0 3 cm ft® 144 . 3 in ft® 9.290X10"® 3 m in .® 6.452 cm® in .® 6.944X10"® ft® 3 in. 6.452X10"^ m® m® 1550 in.® m® 10.76 ft® 3 m 1.196 yd® 3 m 3.861X10"’^ sq mi DENSITY cm® 1.602X10"® ft®/lb ft®/lb 62.43 cm®/ g g/ cm® 62.43 Ib/ft® Ib/ft® 1.602X10"® g/ cm® lb/ in 27.68 g/ cm® Ib/gal 0.1198 g/ cm® ELECTRICAL* Multiply # of ^ by — ► to obtain # of to obtain # of — by — Divide # of amperes 1 coulombs amperes 2.998X10® esu/ sec amperes 6.281x10^® electrons/ sec ampere-hours 3600.0 coulombs ampere-hours 0.03731 faradays coulombs 2.998x10® statcoulombs coulombs 6.281X10^® electronic charges coulombs 1.036X10"® faradays faradays/sec 9.650X10^ amperes faradays 26.80 ampere -hours faradays 9.650X10^ coulombs farads 10® microfarads International amperes 0.999835 amperes (absolute) international volts 1.00033 volts (absolute) international ohms 1.000495 ohms (absolute) international volt farady 9.654X10^ joules microfarads 10~® farads microhms 10"^^ megohms microhms 10"® ohms watts 1 j oules/ sec ENERGY Btu 1.0548X10 joules (absolute) Btu 0.25198 kg-cal Btu 1.0548X10 ergs Btu 2.930X10 kW-hr Btu 0.556 g-cal/g * Units are absolute unless noted otherwise. ENERGY - -Continued Multiply # of to obtain # of eV eV eV ev ergs ergs ergs ergs ergs ergs ergs ergs gm-calories gm-calories joules (abs) joules (abs) joules (abs) g-cal/g kg-cal kg-cal ft-lb ft-lb kw-hr kW-hr MeV by by 1.6021X10 1. 6021 X 10 "^^ 10 “^ 10 "® lO""^ 6.2418X10^ 6.2418X10^^ 1.0 9.480X10"^^ 7.375X10"® 2.390X10"® 1.020X10"® 3.968X10"® 4. 186X10'^ 10 "^ 0.7376 9.480x10"^ 1.8 3.968 3.087X10® 1.356 3.239x10"^ 2.247x10^® 3.60x10^® 1.6021x10"® to obtain # of Divide # of ergs joules (abs) keV MeV joules (abs) MeV eV dyne-cm Btu ft-lb g-cal g-cm Btu ergs ergs ft-lb Btu Btu/ lb Btu ft-lb joules (abs) kg-cal MeV ergs ergs - 1 3 1 7 Energy to mass conversions under miscellaneous FISSION Multiply # of by ► - to obtain # of to obtain # of — by - Divide it= of Btu 1.28X10"® grams fissioned* * * § Btu 1.53X10"® grams destroyed*! Btu 3.29X10^® fissions fission of 1 g 235 y 1 megawatt -days fissions 8.9058X10"^® kilowatt-hours fissions* 3.204X10"^ ergs kilowatt-hours 2.7865X10^’^ ®®®U fission neutrons* kilowatts per average thermal neu- kilogram U 2.43X10^° tron flux in fuel*! megawatt-days per ton U 1.174X10"^ 7c U atoms fissioned§ megawatts per ton average thermal neu- U 2. 68X10^° /E^ tron flux in fuel*! neutrons per kilo- barn IXlO®^ neutrons/ cm® watts 3.121X10^° fissions/ sec FLUID FLOW RATES cm /min 2.19X10"® f t®/min cm /sec 8.64X10"® m® / day cm /sec 1.585X10"® gal/min cm / sec 3.60 liters/hr ft^/min 4.72X10® cm /sec f t^ / sec 4.488X10® gal/min gal/min 2.228X10"® ft®/ sec liters/hr 0.278 cm /sec liters/min 15.851 gal/hr * At 200 MeV/fission. t Thermal neutron spectrum (a = 0.193). 4= O’ (fission = 500 barns). § At 200 MeV/fission, in 235y_238y [jj^^ture of low content. f=s E = enrichment in grams ^^^U/gram total. No other fission- able isotope present. Source: Nucleonics, Vol. 18, No. 11 (Nov. 1960), p. 209. 18 FLUID FLOW RATES- -Continued Multiply # of — ^ by ► to obtain # to obtain # of by ^ Divide # of liters/min 15.851 gal /hr /day 11.57 cm /sec yd^/min 0.450 f t^/sec yd^ /min 3.367 gal/ sec yd^ /min 12.74 liters/sec LENGTH angstroms (A) 10“® cm o A 10“^° m microns (fx) 10“^ mm 1 o cm M- CD 1 O rH m 1^ 3.937X10"^ in. mm 10“^ cm cm 0.3937 in. cm 3.2808X10'^ ft cm 10"^ m m 39.370 in. m 3.2808 ft m 1.0936 yd m 10"^ km m 6.2137X10"^ miles km 0.62137 miles mils 10"^ in. mils 2.540X10“^ cm in. 10^ mils in. 2.5400 cm ft 30.480 cm rods 5.500 yd miles 5280 ft miles 1760 yd miles 1.6094 km ; Q MASS Multiply # of by to obtain to obtain of — by Divide # of mg 10"® g mg 3.527X10"® oz avdp mg 1.543X10"^ grains g 3.527X10"^ oz avdp g CQ 1 o 1— 1 kg g 980.7 dynes g 2.205X10"® lb kg 2.205 lb kg 0.0685 slugs kg 9.807X10® dynes lb 4.448X10® dynes lb 453.592 g lb 0.4536 kg lb 16 oz avdp lb 0.0311 slugs dynes 1.020X10"® g dynes 2.248X10"® lb u (unified-- scale) 1.66043X10"®’^ kg amu (physical-- scale) 1.65980X10"®'^ kg oz 28.35 g oz 6.25X10"® lb Mass to energy conversions under miscellaneous. MISCELLANEOUS temperature °C = (°F-32)/1.8 = (°F-32) 5/9 °F = 1.8°C + 32 = (9/5) °C + 32 °K = °C + 273.16 wavelength to energy conversion keV = 12.40/A eV = 1. 240X1 0"®/m MISCELLANEOUS --Continued Multiply IF of ^ by to obtain # to obtain # of — by ^ Divide // of radians 57.296 degrees eV 1. 78258X10"^® grams eV 1.07356X10"^ u erg 1.11265X10"^^ grams proton masses 938.256 MeV neutron masses 939.550 MeV electron masses 511.006 keV u (amu on C scale) 931.478 MeV POWER Btu/hr 0.2162 f t-lb/ sec Btu/hr 0.0700 gm-cal/ sec Btu/hr 3.929X10"^ horsepower Btu/hr 0.2930 watts Btu/min 12.97 f t-lb/ sec Btu/min 0.02357 horsepower Btu/min 0.01758 kilowatts Btu/min 17.58 watts horsepower 42.42 Btu/min horsepower 33,000 ft- Ib/min horsepower 550 f t- Ib/sec horsepower 10.69 kg-cal/min horsepower 0.7457 kilowatts horsepower 4.655x10^^ MeV/ sec kg-cal/min 9.356X10"^ horsepower kilowatts 14.33 kg-cal/min kilowatts 1.341 horsepower kilowatts 6.243X10^^ MeV/ sec watts lO"^ ergs/sec watts 0.7376 ft- lb/ sec watts 3.414 Btu/hr POWER- -Continued Multiply # of ^ by — ^ to obtain # of to obtain # of by ^ Divide # of watts 0.05690 Btu/min watts 0.01433 kg-cal/min ergs/ sec 5.688X10“® Btu/min ergs/ sec 4.425X10“® f t-lb/min ergs/ sec 1.433X10“® kg-cal/min PRESSURE atm 14.696 Ib/in.® atm 760 mm Hg (0°C) atm 76.0 cm Hg (0° C) atm 1.0133 bars atm 1.0332X10® g/cm® atm 29.921 in. Hg (0°C) cm Hg 0.1934 lb/ in.® cm Hg 1.316X10“^ atm cm Hg 0.4465 ft of HgO in. Hg 0.4912 Ib/in.® g/cm^ 1.4223X10“® Ib/in.® bars 1 — 1 dynes/ cm® bars 14.504 lb/ in.® dynes/cm^ 1.4504X10“® lb/ in.® dynes /cm^ 1.0197X10“® g/cm® Ib/in.^ 27.673 in. of H 2 O (4°C) lb/in.2 2.3066 ft of H 2 O (4°C) Ib/in.^ 6.805X10“® atm Ib/in.^ 2.036 in. Hg (0°C) lb/ in.^ 5.1715 cm Hg lb/ in.^ 51.715 mm Hg ft of H 2 O 2.230 cm Hg 22 RADIOLOGICAL UNITS Multiply # of to obtain # of by by to obtain # of Divide # of curies 3.700X10^° dis/ sec curies 2.220X10^^ dis/min curies 10^ millicuries curies 10® microcuries curies 10^2 picocuries curies 10”® kilocuries dis/min 4.505X10"^° millicuries dis/min 4.505X10"’^ microcuries dis/ sec 2.703X10"® millicuries dis/ sec 2.703X10"® microcuries kilocuries 10® curies tnicrocuries 3.700X10^ dis/ sec tnicrocuries 2.220X10® dis/min mill icuries 3.700X10'^ dis/ sec millicuries 2.220X10® dis/min R 2.58X10"^ C/kg of air R 1 esu/cm® of air (s.t.p.) R 2.082X10® ion prs/cm® of air (s.t.p.) R 1.610X10^® ion prs/g of a R (33.7 pr.) eV/ ion 7.02X10^ 7.02X10^ MeV/ cm® of air (s.t.p.) R (33.7 pr.) eV/ ion 5.43X10'^ MeV/g of air R (33.7 pr .) eV/ ion 86.9 ergs/g of air R (33.7 pr.) eV/ ion 2.08X10"® g-cal/g of air R (33.7 pr.) eV/ ion ^98 ergs/g of soft tissue rads 0.01 J/kg rads 100 ergs/g rads 8.071X10^ MeV/ cm® of air (s.t.p.) rads 6.242X10’^ MeV/g rads 10"® watt -sec/ g RADIOLOGICAL UNITS- -Cont inued Multiply # of by — »- to obtain # to obtain # of by Divide # of rads (33.7 ev/ion ion prs/cm pr.) 2.39X10® (s.t.p.) |j,Ci/cm^ (M-Ci/ml) 2.22X10^® dpm/ m® |j,Ci/ ctn^ 2.22X10® dpm/liter dpm/ tn^ 0.4505 pCi/ m® TIME days 86,400 sec days 1440 min years (365 days) 3.1536X10’^ sec years 5.256X10^ min years 8.760X10^ hr work weeks 1 .44X10^ sec work weeks 40 hr work months 4.2 work weeks work months 168 hr VELOCITY cm/ sec 0.6000 m/ min cm/ sec 0.0360 km/ hr cm/ sec 0.032808 ft/ sec cm/ sec 1.9685 ft/ min cm/ sec 3.728X10"^ mi/min cm/ sec 0.02237 mph m/ min 1.667 cm/ sec m/ min 5.468X10'® ft/ sec m/ min 3.728X10'® mph ft/ sec 18.29 m/ min ft/ sec 0.6818 mph ft /min 0.5080 cm/ sec f t/min 1.667X10'® ft/ sec ft/ min 1.136X10'® mph mph 44.70 cm/ sec 24 VELOCITY - -Con t inued Multiply # of — ^ by to obtain # of to obtain # of by Divide # of mph 88 ft/ min mph 1.467 ft/ sec mph 26.82 m/ min VOLUME cm^ (cc) 0.99997 ml 3 cm 6.1023X10"^ 3 in. 3 cm 10"® 3 m 3 cm 9.9997X10"“^ liters 3 cm 3.5314X10"® ft® 3 m 35.314 ft® 3 m 2.642X10^ gal ^ 3 m 9.9997X10^ liters 3 in. 16.387 -cm® 3 in. 5.787X10"^ ft® 3 in. 1.639X10"^ liters in 4.329x10"® gal ft^ 2.832X10"® 3 m ft^ 7.481 gal ft^ 28.32 liters ft^ 1728 . 3 in. gal (U.S.) 231.0 in .® gal 0.13368 ft® liters 33.8147 fluid oz liters 1.05671 quarts liters 0.26418 gal gm moles (gas) 22.4 liters (s.t.p.) 373-062 0 - 70-3 EQUATIONS A. LOGARITHMIC RELATIONS log N = the exponent or power to which the base 10 must be raised to obtain a value N (the common logarithm of N) In N = the power to which the base 2.718... (e) must be raised to obtain a value N (the natural logarithm of N) (1) log N = 0.4343 In N (2) In N = 2.3026 log N (3) log MN = log M + log N (4) log M/N = log M - log N (5) log N®’ = a log N (6) log yir = (log N)/a B. CIASSICAL PHYSICS Unless otherwise noted, the symbols and dimensions in this section are used consistently as follows: F = force (gm-cm/sec^, dynes) r = radius of action (cm) s = distance (cm) m = mass (gm) V = velocity (cm/sec) a = acceleration (cm/sec^) (1) Linear Force F = m a = (gm) (cm/sec^ ) = gm-cm/sec^ = dynes (2) Momentum p = mv = (gm)(cm/sec) (3) Conservation of Momentum (any impact between Body A and Body B) = Va, B B, i = initial f = final (4) Work W=Fs=mas= (gm) (cm/sec^ ) (cm) = gm-cm^/sec^ = dyne-cm = erg (5) Energy E = (work) = F s = (gm-cm/sec^ ) (cm) = gm-cm^/sec^ = erg (6) Kinetic Energy K.E. = -g- m v^ = (gm) (cm/sec)^ = gm-cm^/sec^ = erg (7) Conservation of Kinetic Energy (elastic impact: Body A and Body B) +4"'b''b,^ +4”b''b,^ (8) Power P = (work/ time) = F s/t = (gm-cm/sec^ ) (cm) /sec = erg/sec 26 C. WAVE AND QUANTUM RELATIONS Unless otherwise noted, symbols and dimensions in this section are used consistently as follows: V = velocity of wave or particle (cm/sec) h = Planck constant (6.6 X 10~^^ erg sec) V = frequency of wave or quanta (hertz) X = wavelength (cm) Xq = wavelength of incident radiation (angstroms) Xg = wavelength of scattered radiation at angle 6 (angstroms) E = energy (ergs) 6 = angle between incident and scattered radiation c = velocity of light (3 X 10^° cm/sec) m = mass of particle (gm) = work function (ergs) (1) Wave Equation Wave velocity (v or c) = Xv (2) Associated Wavelength of a Particle Wavelength = X = ^ (3) Photoelectric Equation E = 0 + |mv^ (4) Photon Energy E = hv E = — ^, 1.242 X 10^ Energy in electron volts = — — : Wavelength in angstroms (5) Mass-Energy Relation E = mc^ (6) Momentum of Photon h mv (7) Compton Scattering of Gamma and X Rays Xq = Xo + 0.0242 (1 - cos 0) D. ELECTROSTATICS The following units apply in this section: F = force (dynes) Q = electrostatic charge (statcoulombs) s = distance (cm) V = potential (statvolts) C = capacitance (statfarads) W = work (ergs) € = dielectric constant (1) Force Between Two Charges, a and b (Coulomb's Law) F = (2) Work W = Q V (3) Capacitance C = Q/V (4) Potential V = Q/s E. RADIOACTIVE DECAY The following symbols will be used in this section: Nq = number of nuclei at some original time N = number of nuclei remaining after a time interval, t Iq = intensity of radiation at some original time I = intensity of radiation after a time interval, t Aq = activity of sample at some original time A = activity remaining after a time interval, t X = decay constant for the particular radioactive element e = base of natural logarithms; 2.718. .. t = elapsed time = half-life of a particular radioactive element n = t/T, = number of : half -live s (1) N = Noe"^^ or N (2) A = Aoe"^" or A (3) I *> CD O M II or I (4) N = Noe “ or N/No = 1/2" Decay Constant (5) X = 0.693/T, 28 F. G. Fission Product Decay* “13 “13 (6) Ii ti ■ = I 2 tg ' where = radiation intensity at time ti (>4h) after fission Ig = radiation intensity at time tg (<200 days) after fission SPECIFIC ACTIVITY (Isotopic) Specific Activity \N = 0.693N/T, = dis/ sec/gm where T, = half-life (seconds) N = number of atoms per gram Specific Activity XN/(3.7 X 10^°) = RADIATION ABSORPTION N X 1.873 X 10"^^ curies/ gm ( 1) Alpha Particle Range R 0.8 MeV) R = 0.526 E - 0.094 where Ra - range in cm of air at 1 atm and 15°C E = energy, MeV where R = range in mg/ cm^ InR] ^ E = max. energy, MeV where R, E same as above where R = range, gm/ cm^ E = max. energy, MeV Feather's rule (E >0.6 MeV) R = 0.542 E - 0.133 where R, E same as for Sargeant's rule (3) Gamma Ray Absorption The following symbols will be used in this Iq = original radiation exposure rate I = attenuated radiation exposure rate = linear absorption coefficient (cm ^) section: 0.693 ■*See "The Effects of Nuclear Weapons," 1962, §9.170-9.177 |J./ p = mass absorption coefficient (cm^/gm) = absorber density (gm/cm^) = absorber thickness (cm) = half-value layer of absorber (cm) = base of natural logarithms (2.718. = "buildup” factor For monoenergetic or monochromatic narrow-beam radiation: I = loe-**" or For monoenergetic or monochromatic wide-beam radiation: I = bloe"^’' (4) Neutron Absorption (for a collimated beam of monoenergetic neutrons) T- T- - ffNx, _ ..... .. i = ioe where Iq = initial neutron intensities I N = final neutron intensities = number of atoms per cc in the absorber = cross section (square centimeters) X e = thickness of absorber (cm) . ) = base of the natural logarithm (2.718. Since this equation is only an approximation of neutron attenuation, average neutron energies can be used for determining the value of a. The equation is not accurate enough to justify the use of neutron buildup factors. (5) Approximate Range - Energy Relation for Protons* R = (E/9.3) 1 .8 where E R = energy in MeV (few MeV to 200 MeV) = range in meters in air H. BETA PARTICLE COUNTING (1) Self -Absorption R: ""O _ -- /I -m X \ “5“ - “ (1 - e ) 1 R mx where Rq R X m = measured counting rate = true counting rate = sample thickness (mg/cm^) = absorption coefficient (cm^/mg) [See NBS Hand- book No. 51, p. 26] *Segre, Emilio, "Experimental Nuclear Physics," Vol. 1, New York: John Wiley & Sons, Inc., 1953. 30 (2) Resolving Time Determination T ^ Rj + Ra - Ri2 2 (Ri Rg) where r = resolving time, seconds Rjl = counting rate, source 1 (c/ s) Rg = counting rate, source 2 (c/s) Ri 2 “ counting rate, combined sources 1 and 2 (c/s) (3) Resolving Time Correction where R = true counting rate (c/ s) Ro = observed counting rate (c/ s) T = resolving time, seconds I. STATISTICS OF COUNTING^ n = number of counts, one observation t = counting time, one observation h = mean number of counts, series of observations t = mean counting time, series of observations m = number of observations a == theoretical standard deviation St = observed standard deviation of the time required to record a preset number of counts Sji = observed mean standard deviation of the number of counts recorded in a preset time r = average number of counts per unit time (1) Theoretical Standard Deviation (a) CTjj = = a/tT for single observation (b) a- = Vrt/m = A/n/ m for average number of counts/interval (2) Observed (Experimental) Standard Deviation (a) Series of observations, preset time * Bleuler, Ernst, and Goldsmith, George J., "Experimental Nucleonics," New York: Holt, Rinehart & Winston, Inc., 1952. m -1 i- 1=1 (b) Series of observations, preset count m (ti - t)^/(m - 1) St = I i = l Sn = (n/t)St (c) Reliability factor R.F. = S /a- n n J. CALIBRATION PROCEDURES Gamma Emitter Dose in Air (1) Exposure Rate (from a point source) (Equation assumes that one ion pair in air causes an ly = 0.156 n E (10^ Pa) average energy expenditure of 32.7 electron volts.) where ly = raR/hr at 1 meter per mCi n = gamma quanta per disinte- gration E = energy of gamma quanta in MeV Pa energy absorption coeffi- cient for gamma in air (S.T.P.) in cm (2) Exposure Rate (from point source of radium, 0.5 mm Pt cover) -1 mE/hr = yd „ ,, 8400 mg of Ra mR/hr = 2 cm where yd - distance to source (yd) cm = distance (cm) (3) Exposure Rate, Approximate (from any gamma point source) R/hr at 1 foot = 6 C E n where C = number of curies mR/hr/mCi at 1 meter = 0.5 nE E = gamma ray energy (MeV) n = gamma quanta/dis (4) Exposure Rate (from any gamma point source) mR/hr = nly/s^ where n = number of millicuries ly = mR/hr at 1 meter per mCi s = distance (meters) (5) Exposure Rate (from a linear gamma emitter source) The following terminology will be used: S = source activity in photons per second per unit length 4> = flux at point of interest in photons per square centimeter per second r = distance from source to point of interest, P d = angle in degrees 32 JrN K. INTERNAL RADIATION DOSAGE (1) Biological Half-Life 0.693 (2) Effective Half-Life Teff T, +T b where biological decay constant biological half-life where Tgjf= effective half-life Tj^ = radioactive (physical) ^ half-life T(j = biological half-life (3) Beta Emitter Dose D = 73.8 E TgffC (1 - e where D = dose (rads) E = average energy of beta particle (MeV) Teff = effective half-life C = |j,Ci/gtn of radionuclide in tissue Xgff = effective decay constant (day“^ ) t = time (day) L. D ECONT AMINATION FACTOR Initial Activity Final Activity 3 3 D.F. M. ISOTOPIC DILUTION ( 1) Single Addition Method ( 2 ) Double Dilution (a) S = Si Sg (Gi - Sg (b) Z = Sj Gg - S]^ Si - Sg Ga) Gi Gi N. NEUTRON ACTIVATION METHODS Thin Targef =^ A(f) = ko-g^ £ n (1 - e e where w = total weight of diluent material (weight of stable material) w' = total weight of labeled material (weight of radioactive material) SpA ' = specific activity of labeled material SpA = specific activity of mixture where Sq Si = initial specific activity = specific activity of first dilution Sg = specific activity of second dilution = weight of carrier added for first dilution Gg = weight of carrier added for second dilution Z = weight of original radio- active material where A^ 4> k (7 ac = measured activity in net counts per second at time = time increment between end of irradiation and the time at which the target is counted = efficiency of the counter for measuring the induced radioactivity = activation across section for neutron capture by the target material, square centimeters per atom per neutron *A thin target is one which will not reduce the neutron flux by more than the error permitted for the experiment. 34 f = flux of neutrons, neutrons per square centimeter per second n = total number of target nuclei X = disintegration constant of radioactive material t = time duration of expo- sure to neutron flux e = base of natural logarithm (2.718. . .) GEOMETRY OF A COUNTER Point Source G = 0.5 (1 - cos a) - sin^ ■|o' or phosphor d = distance between counter and source G = geometry factor where O! = arc tan — a = radius of counter window SQUARES AND SQUARE ROOTS N Vn VlON N N2 Vn V \0 N N N2 Vn VlON 1.00 1.0000 1.00000 3.16228 1.60 2.5600 1.26491 4.00000 2.20 4.8400 1.48324 4.69042 1.01 1.0201 1.00499 3.17805 1.61 2.5921 1.26886 4.01248 2.21 4.8841 1.48661 4.70106 1.02 1.0404 1.00995 3.19374 1.62 2.6244 1.27279 4.02492 2.22 4.9284 1.48997 4.71169 1.03 1.0609 1.01489 3.20936 1.63 2.6569 1.27671 4.03733 2.23 4.9729 1.49332 4.72229 1.04 1.0816 1.01980 3.22490 1.64 2.6896 1.28062 4.04969 2.24 5.0176 1.49666 4.73286 1.05 1.1025 1.02470 3.24037 1.65 2.7225 1.28452 4.06202 2.25 5.0625 1.50000 4.74342 1.06 1.1236 1.02956 3.25576 1.66 2.7556 1.28841 4.07431 2.26 5.1076 1.50333 4.75395 1;07 1.1449 1.03441 3.27109 1.67 2.7889 1.29228 4.08656 2.27 5.1529 1.50665 4.76445 1.08 1.1664 1.03923 3.28634 1.68 2.8224 1.29615 4.09878 2.28 5.1984 1.50997 4.77493 1.09 1.1881 1.04403 3.30151 1.69 2.8561 1.30000 4.11096 2.29 5.2441 1.51327 4.78539 1.10 1.2100 1.04881 3.31662 1.70 2.8900 1.30384 4.12311 2.30 5.2900 1.51658 4.79583 1.11 1.2321 1.05357 3.33167 1.71 2.9241 1.30767 4.13521 2.31 5.3361 1.51987 4.80625 1.12 1.2544 1.05830 3.34664 1.72 2.9584 1.31149 4.14729 2.32 5.3824 1.52315 4.81664 1.13 1.2769 1.06301 3.36155 1.73 2.9929 1.31529 4.15933 .2.33 5.4289 1.52643 4.82701 1.14 1.2996 1.06771 3.37639 1.74 3.0276 1.31909 4.17133 2.34 5.4756 1.52971 4.83735 1.15 1.3225 1.07238 3.39116 1.75 3.0625 1.32288 4.18330 2.35 5.5225 1.53297 4.84768 1.16 1.3456 1.07703 3.40588 1.76 3.0976 1.32665 4.19524 2.36 5.5696 1.53623 4.85798 1.17 1.3689 1.08167 3.42053 1.77 3.1329 1.33041 4.20714 2.37 5.6169 1.53948 4.86826 1.18 1.3924 1.08628 3.43511 1.78 3.1684 1.33417 4.21900 2.38 5.6644 1.54272 4.87852 1.19 1.4161 1.09087 3.44964 1.79 3.2041 1.33791 4.23084 2.39 5.7121 1.64596 4.88876 1.20 1.4400 1.09545 3.46410 1.80 3.2400 1.34164 4.24264 2.40 5.7600 1.54919 4.89898 1.21 1.4641 1.10000 3.47851 1.81 3.2761 1.34536 4.25441 2.41 5.8081 1.55242 4.90918 1.22 1.4884 1.10454 3.49285 1.82 3.3124 1.34907 4.26615 2.42 5.8564 1.65563 4.91935 1.23 1.5129 1.10905 3.50714 1.83 3.3489 1.35277 4.27785 2.43 5.9049 1.55885 4.92950 1.24 1.5376 1.11355 3.52136 1.84 3.3856 1.35647 4.28952 2.44 5.9536 1.56205 4.93964 1.25 1.5625 1.11803 3.53553 1.85 3.4225 1.36015 4.30116 2.45 6.0025 1.66525 4.94975 1.26 1.5876 1.12250 3.54965 1.86 3.4596 1.36382 4.31277 2.46 6.0516 1.66844 4.95984 1.27 1.6129 1.12694 3.56371 1.87 3.4969 1.36748 4.32435 2.47 6.1009 1.57162 4.96991 1.28 1.6384 1.13137 3.57771 1.88 3.5344 1.37113 4.33590 2.48 6.1504 1.67480 4.97996 1.29 1.6641 1.13578 3.59166 1.89 3.5721 1.37477 4.34741 2.49 6.2001 1.57797 4.98999 1.30 1.6900 1.14018 3.60555 1.90 3.6100 1.37840 4.35890 2.50 6.2500 1.58114 5.00000 1.31 1.7161 1.14455 3.61939 1.91 3.6481 1.38203 4.37035 2.51 6.3001 1.58430 5.00999 1.32 1.7424 1.14891 3.63318 1.92 3.6864 1.38564 4.38178 2.52 6.3504 1.58745 5.01996 1.33 1.7689 1.15326 3.64692 1.93 3.7249 1.38924 4.39318 2.53 6.4009 1.59060 5.02991 1.34 1.7956 1.15758 3.66060 1.94 3.7636 1.39284 4.40454 2.54 6.4516 1.59374 5.03984 1.35 1.8225 1.16190 3.67423 1.95 3.8025 1.39642 4.41588 2.55 6.5025 1.59687 5.04975 1.36 1.8496 1.16619 3.68782 1.96 3.8416 1.40000 4.42719 2.56 6.5536 1.60000 5.05964 1.37 1.8769 1.17047 3.70135 1.97 3.8809 1.40357 4.43847 2.57 6.6049 1.60312 5.06952 1.38 1,9044 1.17473 3.71484 1.98 3.9204 1.40712 4.44972 2.58 6.6564 1.60624 5.07937 1.39 1.9321 1.17898 3.72827 1.99 3.9601 1.41067 4.46094 2.59 6.7081 1.60935 5.08920 1.40 1.9600 1.18322 3.74166 j 2.00 4.0000 1.41421 4.47214 2.60 6.7600 1.61245 5.09902 1.41 1.9881 1.18743 3.75500 2.01 4.0401 1.41774 4.48330 2.61 6.8121 1.61555 5.10882 1.42 2.0164 1.19164 3.76829 : 2.02 4.0804 1.42127 4.49444 2.62 6.8644 1.61864 5.11859 1.43 2.0449 1.19583 3.78153 2.03 4.1209 1.42478 4.50555 2.63 6.9169 1.62173 5.12835 1.44 2.0736 1.20000 3.79473 ! 2.04 4.1616 1.42829 4.51664 2.64 6.9696 1.62481 5.13809 1.45 2.1025 1.20416 3.80789 2.05 4.2025 1.43178 4.52769 2.65 7.0225, 1.62788 5.14782 1.46 2.1316 1.20830 3.82099 2.06 4.2436 1.43527 4.53872 2.66 7.0756 1.63095 5.15752 1.47 2.1609 1.21244 3.83406 2.07 4.2849 1.43875 4.54973 2.67 7.1289 1.63401 5.16720 1.48 2.1904 1.21655 3.84708 2.08 4.3264 1.44222 4.56070 2.68 7.1824 1.63707 5.17687 1.49 2.2201 1.22066 3.86005 2.09 4.3681 1.44568 4.57165 2.69 7.2361 1.64012 5.18652 1.50 2.2500 1.22474 3.87298 2.10 4.4100 1.44914 4.58258 2.70 7.2900 1.64317 5.19615 1.51 2.2801 1.22882 3.88587 2.11 4.4521 1.45258 4.59347 2.71 7.3441 1.64621 5.20577 1.52 2.3104 1.23288 3.89872 2.12 4.4944 1.45602 4.60435 2.72 7.3984 1.64924 5.21536 1.53 2.3409 1.23693 3.91152 2.13 4.5369 1.45945 4.61519 2.73 7.4529 1.65227 5.22494 1.54 2.3716 1.24097 3.92428 2.14 4.5796 1.46287 4.62601 2.74 7.5076 1.65529 5.23450 1.55 2.4025 1.24499 3.93700 2.15 4.6225 1.46629 4.63681 2.75 7.5625 1.65831 5.24404 1.56 2.4336 1.24900 3.94968 2.16 4.6656 1.46969 4.64758 2.76 7.6176 1.66132 5.25357 1.57 2.4649 1.25300 3.96232 2.17 4.7089 1.47309 4.65833 2.77 7.6729 1.66433 5.26308 1.58 2.4964 1.25698 3.97492 2.18 4.7524 1.47648 4.66905 2.78 7.7284 1.66733 5.27257 1.59 2.5281 1.26095 3.98748 2.19 4.7961 1.47986 4.67974 2.79 7.7841 1.67033 5.28205 1.60 2.5600 1.26491 4.00000, 2.20 4.8400 1.48324 4.69042 2.80 7.8400 1.67332 5.29150 iV N2 Vn VlOiV N AT* Vn VlON N N2 Vn 36 SQUARES AND SQUARE ROOTS N Vn VlON N Vn Vlim N N ^ Vn VlOiV 2.60 7.8400 1.67332 5.29150 3.40 11.5600 1.84391 5.83095 4.00 16.0000 2.00000 6.32456 2.81 7.8961 1.67631 5.30094 3.41 11.6281 1.84662 5.83952 4.01 16.0801 2.00250 6.33246 2.82 7.9524 1.67929 5.31037 3.42 11.6964 1.84932 5.84808 4.02 16.1604 2.00499 6.34035 2.82 8.0089 1.68226 5.31977 3.43 11.7649 1.85203 5.85662 4.03 16.2409 2.00749 6.34823 2.84 8.0656 1.68523 5.32917 3.44 11.8336 1.85472 5.86515 4.04 16.3216 2.00998 6.35610 2.85 8.1225 1.68819 5.33854 3.45 11.9025 1.85742 5.87367 4.05 16.4025 2.01246 6.36396 2.86 8.1796 1.69115 5.34790 3.46 11.9716 1.86011 5.88218 4.06 16.4836 2.01494 6.37181 2.87 8.2369 1.69411 5.35724 3.47 12.0409 1.86279 5.89067 4.07 16.5649 2.01742 6.37966 2.88 8.2944 1.69706 5.36656 3.48 12.1104 1.86548 5.89915 4.08 16.6464 2.01990 6.38749 2.89 8.3521 1.70000 5.37587 3.49 12.1801 1.86815 5.90762 4.09 16.7281 2.02237 6.39531 2.90 8.4100 1.70294 5.38516 3.50 12.2500 1.87083 5.91608 4.10 16.8100 2.02485 6.40312 2.91 8.4681 1.70587 5.39444 3.51 12.3201 1.87350 5.92453 4.11 16.8921 2. 027^1 6.41093 2.92 8.5264 1.70880 5.40370 3.52 12.3904 1.87617 5.93296 4.12 16.9744 2.02978 6.41872 2.93 8.5849 1.71172 5.41295 3.53 12.4609 1.87883 5.94138 4.13 17.0569 2.03224 6.42651 2.94 8.6436 1.71464 5.42218 3.54 12.5316 1.88149 5.94979 4.14 17.1396 2.03470 6.43428 2.95 8.7025 1.71756 5.43139 3.55 12.6025 1.88414 5.95819 4.15 17.2225 2.03715 6.44205 2.96 8.7616 1.72047 5.44059 3.56 12.6736 1.88680 5.96657 4.16 17.3056 2.03961 6.44981 2.97 8.8209 1.72337 5.44977 3.57 12.7449 1.88944 5.97495 4.17 17.3889 2.04206 6.45755 2.98 8.8804 1.72627 5.45894 3.58 12.8164 1.89209 5.98331 4.18 17.4724 2.04450 6.46529 2.99 8.9401 1.72916 5.46809 3.59 12.8881 1.89473 5.99166 4.19 17,5561 2.04695 6.47302 3.00 9.0000 1.73205 5.47723 3.60 12.9600 1.89737 6.00000 4.20 17.6400 2.04939 6.48074 3.01 9.0601 1.73494 5.48635 3.61 13.0321 1.90000 6.00833 4.21 17.7241 2.05183 6.48845 3.02 9.1204 1.73781 5.49545 3.62 13.1044 1.90263 6.01664 4.22 17.8084 2.05426 6.49615 3.03 9.1809 1.74069 5.50454 3.63 13.1769 1.90526 6.02495 4.23 17.8929 2.05670 6.50384 3.04 9.2416 1.74356 5.51362 3.64 13.2496 1.90788 6.03324 4.24 17.9776 2.05913 6.51153 3.05 9.3025 1.74642 5.52268 3.65 13.3225 1.91050 6.04152 4.25 18.0625 2.06155 C .51920 3.06 9.3636 1.74929 5.53173 3.66 13.3956 1.91311 6.04979 4.26 18.1476 2.06398 6.52687 3.07 9.4249 1.75214 5.54076 3.67 13.4689 1.91572 6.05805 4.27 18.2329 2.06640 6.53452 3.08 9.4864 1.75499 5.54977 3.68 13.5424 1.91833 6.06630 4.28 18.3184 2.06882 6.54217 3.09 9.5481 1.75784 5.55878 3.69 13.6161 1.92094 6.07454 4.29 18.4041 2.07123 6.54981 3.10 9.6100 1.76068 5.56776 3.70 13.6900 1.92354 6.08276 4.30 18.4900 2.07364 6.55744 3.11 9.6721 1.76352 5.57674 3.71 13.7641 1.92614 6.09098 4.31 18.5761 2.07605 6.56506 3.12 9.7344 1.76635 5.58570 3.72 13.8384 1.. 92873 6.09918 4.32 18.6624 2.07846 6.57267 3.13 9.7969 1.76918 5.59464 3.73 13.9129 1.93132 6.10737 4.33 18.7489 2.08087 6.58027 3.14 9.8596 1.77200 5.60357 3.74 13.9876 1.93391 6.11555 4.34 18.8356 2.08327 6.58787 3.15 9.9225 1.77482 5.61249 3.75 14.0625 1.93649 6.12372 4.35 18.9225 2.08567 6.59545 3.16 9.9856 1.77764 5.62139 3.76 14.1376 1.93907 6.13188 4.36 19.0096 2.08806 6.60303 3.17 10.0489 1.78045 5.63028 3.77 14.2129 1.94165 6.14003 4.37 19.0969 2.09045 6.61060 3.18 10.1124 1.78326 5.63915 3.78 14.2884 1.94422 6.14817 4.38 19.1844 2.09284 6.61816 8.19 10.1761 1.78606 5.64801 3.79 14.3641 1.94679 6.15630 4.39 19.2721 2.09523 6.62571 3.20 10.2400 1.78885 5.65685 3.80 14.4400 1.94936 6.16441 4.40 19.3600 2.09762 6.63325 3.21 1 C .3041 1.79165 5.66569 3.81 14.5161 1.95192 6.17252 4.41 19.4481 2.10000 6.64078 3.22 10.3384 1.79444 5.67450 3.82 14.5924 1.95448 6.18061 4.42 19.5364 2.10238 6.64831 3.23 10.4329 1.79722 5.68331 3.83 14.6689 1.95704 6.18870 4.43 19.6249 2.10476 6.65582 3.24 10.4976 1.80000 5.69210 3.84 14.7456 1.95959 6.19677 4.44 19.7136 2.10713 6.66333 3.25 10.5625 1.80278 5.70088 3.85 14.8225 1.96214 6.20484 4.45 19.8025 2.10950 6.67083 3.26 10.6276 1.80555 5.70964 3.86 14.8996 1.96469 6.21289 4.46 19.8916 2.11187 6.67832 3.27 10.6929 1. 80 S 31 5.71839 3.87 14.9769 1.96723 6.22093 4.47 19.9809 2.11424 6.68581 3.28 10.7584 1.81108 5.72713 3.88 15.0544 1.96977 6.22896 4.48 20.0704 2.11660 6.69328 3.29 10.8241 1.81384 5.73585 3.89 15.1321 1.97231 6.23699 4.49 20.1601 2.11896 6.70075 3.30 10.8900 1.81659 5.74456 3.90 15.2100 1.97484 6.24500 4.50 20.2500 2.12132 6.70820 3.31 10.9561 1.81934 5.75326 3.91 15.2881 1.97737 6.25300 4.51 20.3401 2.12368 ().71 565 3.32 11.0224 1.82209 5.76194 3.92 15.3664 1.97990 6.26099 4.52 20.4304 2.12603 6.72309 3.33 11.0889 1.82483 5.77062 3.93 15.4449 1.98242 6.26897 4.53 20.5209 2.12838 6.7:9 (.53 3.34 11.1556 1.82757 5.77927 3.94 15.5236 1.98494 6.27694 4.54 20.6116 2.13073 6.73795 3.35 11.2225 1.83030 5.78792 3.95 15.6025 1.98746 6.28490 4.55 20.7025 2.13307 6.745.37 3.36 11.2896 1.83303 5.79655 3.96 15.6816 1.98997 6.29285 4.56 20.7936 1 2. 1.3542 6.7527V 3.37 11 3569 1.83576 5.80517 3.97 15.7609 1.99249 6.30079 4.57 20.8849 1 2.13776 f,.7)>nls 3.38 11.4244 1.83848 5.81378 3.98 15.8404 1.99499 6.30872 4.58 20.9764 2.14009 6.7 6)7 .57 3.39 11.4921 1.84120 5.82237 3.99 15.9201 1.99750 6.31664 4.59 21.0681 2.14243 6, 77495 3.40 11.5600 1.84391 5.83095 4.00 16.0000 2.00000 6.32456 4.60 21.1600 2.14476 6.7VJ33 N Vn VlON N ^2 Vn VlOA^ N N '- Vn ! VlON a? SQUARES AND SQUARE ROOTS N iV* Vn VlOiV N N ^ Vn VlOAT N iV* Vn VlON 4.60 21.1600 2.14476 6.78233 5.20 27.0400 2.28035 7.21110 5.80 33.6400 2.40832 7.61577 4.61 21.2521 2.14709 6.78970 5.21 27.1441 2.28254 7.21803 5.81 33.7561 2.41039 7.62234 4.62 21.3444 2.14942 6.79706 5.22 27.2484 2.28473 7.22496 5.82 33.8724 2.41247 7.62889 4.63 21.4369 2.15174 6.80441 5.23 27.3529 2.28692 7.23187 5.83 33.9889 2.41454 7.63544 4.64 21.5296 2.15407 6.81175 5.24 27.4576 2.28910 7.23878 5.84 34.1056 2.41661 7.64199 4.65 21.6225 2.15639 6.81909 5.25 27.5625 2.29129 7.24569 6.85 34.2225 2.41868 7.64853 4.66 21.7156 2.15870 6.82642 5.26 27.6676 2.29347 7.25259 5.86 34.3396 2.42074 7.65506 4.67 21.8089 2.16102 6.83374 5.27 27.7729 2.29565 7.25948 5.87 34.4569 2.42281 7.66159 4.68 21.9024 2.16333 6.84105 &.28 27.8784 2.29783 7.26636 5.88 34.5744 2.42487 7.66812 4.69 21.9961 2.16564 6.84836 5.29 27.9841 2.30000 7.27324 5.89 34.6921 2.42693 7.67463 4.70 22.0900 2.16795 6.85565 5.30 28.0900 2.30217 7.28011 5.90 34.8100 2.42899 7.68115 4.71 22.1841 2.17025 6.86294 5.31 28.1961 2.30434 7.28697 5.91 34.9281 2.43105 7.68765 4.72 22.2784 2.17256 6.87023 5.32 28.3024 2.30651 7.29383 5.92 35.0464 2.43311 7.69415 4.73 22.3729 2.17486 6.87750 5.33 28.4089 2.30868 7-.30068 5.93 35.1649 2.43516 7.70065 4.74 22.4676 2.17715 6.88477 5.34 28.5156 2.31084 7.30753 5.94 35.2836 2.43721 7.70714 4.75 22.5625 2.17945 6.89202 5.35 28.6225 2.31301 7.31437 5.96 35.4025 2.43926 7.71362 4.76 22.6576 2.18174 6.89928 5.36 28.7296 2.31517 7.32120 5.96 35.5216 2.44131 7.72010 4.77 22.7529 2.18403 6.90652 5.37 28.8369 2.31733 7.32803 5.97 35.6409 2.44336 7.72658 4.78 22.8484 2.18632 6.91375 5.38 28.9444 2.31948 7.33485 5.98 35.7604 2.44540 7.73305 4.79 22.9441 2.18861 6.92098 5.39 29.0521 2.32164 7.34166 5.99 35.8801 2.44745 7.73951 4.80 23.0400 2.19089 6.92820 5.40 29.1600 2.32379 7.34847 6.00 36.0000 2.44949 7.74597 4.81 23.1361 2.19317 6.93542 5.41 29.2681 2.32594 7.35527 6.01 36.1201 2.45153 7.75242 4.82 23.2324 2.19545 6.94262 5.42 29.3764 2.32809 7.36206 6.02 36.2404 2.45357 7.75887 4.83 23.3289 2.19773 6.94982 5.43 29.4849 2.33024 7.36885 6.03 36.3609 2.45561 7.76531 4.84 23.4256 2.20000 6.95701 5.44 29.5936 2.33238 7.37564 6.04 36.4816 2.45764 7.77174 4.85 23.5225 2.20227 6.96419. 5.45 29.7025 2.33452 7.38241 6.06 36.6025 2.45967 7.77817 4.86 23.6196 2.20454 6.97137 5.46 29.8116 2.33666 7.38918 6.06 36.7236 2.46171 7.78460 4.87 23.7169 2.20681 6.97854 5.47 29.9209 2.33880 7.39594 6.07 36.8449 2.46374 7.79102 4.88 23.8144 2.20907 6.98570 5.48 30.0304 2.34094 7.40270 6.08 36.9664 2.46577 7.79744 4.89 23.9121 2.21133 6.99285 5.49 30.1401 2.34307 7.40945 6.09 37.0881 2.46779 7.80385 4.90 24.0100 2.21359 7.00000 5.50 30.2500 2.34S21 7.41620 6.10 37.2100 2.46982 7.81025 4.91 24.1081 2.21585 7.00714 5.51 30.3601 2.34734 7.42294 6.11 37.3321 2.47184 7.81665 4.92 24.2064 2.21811 7.01427 5.52 30.4704 2.34947 7.42967 6.12 37.4,544 2.47386 7.82304 4.93 24.3049 2.22036 ^7.02140 5.53 30.5809 2.35160 7.43640 6.13 37.5769 2.47588 7.82943 4.94 24.4036 2.22281 7.02851 5.54 30.6916 2.35372 7.44312 6.14 37.6996 2.47790 7.83582 4.95 24.5025 2.22486 7.03562 5.55 30.8025 2.35584 7.4^:983 6.16 37.8225 2.47992 7.84219 4.96 24.6016 2.22711 7.04^73 5.56 30.9136 2.35797 7.45654 6.16 37.9456 2.48193 7.84857 4.97 24.7009 2.22935 7.04982 5.57 31.0249 2.36008 7.46324 6.17 38.0689 2.48395 7.85493 4.98 24.8004 2.23159 7.05691 5.58 31.1364 2.36220 7.46994 6.18 38.1924 2.48596 7.86130 4.99 24.9001 2.23383 7.06399 5.59 31.2481 2.36432 7.47663 6.19 38.3161 2.48797 7.86766 5.00 25.0000 2.23607 7.07107 5.60 31.3600 2.36643 7.48331 6.20 38.4400 2.48998 7.87401 5.01 25.1001 2.23830 7.07814 5.61 31.4721 2.36854 7.48999 ‘6.21 38.5641 2.49199 7.88036 5.02 25.2004 2.24054 7.08520 5.62 31.5844 2.37065 7.49667 6.22 38.6884 2.49399 7.88670 5.03 25.3009 2.24277 7.09225 5.63 31.6969 2.37276 7.50333 6.23 38.8129 2.49600 7.89303 5.04 25.4016 2.24499 7.09930 5.64 31.8096 2.37487 7.50999 6.24 38.9376 2.49800 7.89937 5.05 25.5025 2.24722 7.10634 5.66 31.9225 2.37697 7.51665 6.26 39.0625 2.50000 7.90569 5.06 25.6036 2.24944 7.11337 5.66 32.0356 2.37908 7.52330 6.26 39.1876 2.50200 7.91202 5.07 25.7049 2.25167 7.12039 5.67 32.1489 2.38118 7.52994 6.27 39.3129 2.50400 7.91833 5.08 25.8064 2.25389 7.12741 5.68 32.2624 2.38328 7.53658 6.28 39.4384 •2.50599 7.92465 5.09 25.9081 2.25610 7.13442 5.69 32.3761 2.38537 7.54321 6.29 39.5641 2.50799 7.93095 5.10 26.0100 2.25832 7.14143 5.70 32.4900 2.38747 7.54983 6.30 39.6900 2.50998 7.93725 5.11 26.1121 2.26053 7.14843 5.71 32.6041 2.38956 7.55645 6.31 39.8161 2.51197 7.94355 5.12 26.2144 2.26274 7.15542 5.72 32.7184 2.39165 7.56307 6.32 39.9424 2.51396 7.94984 5.13 26.3169 2.26495 7.16240 5.73 32.8329 2.39374 7.56968 6.33 40.0689 2.51595 7,95613 5.14 26.4196 2.26716 7.16938 5.74 32.9476 2.39583 7.57628 6.34 40.1956 2.51794 7.96241 5.15 26.5225 2.26936 7.17635 5.75 33.0625 2.39792 7.58288 6.36 40.3225 2.51992 7.96869 5.16 26.6256 2.27156 7.18331 5.76 33.1776 2.40000 7.58947 6.36 40.4496 2.52190 7.97496 5.17 26.7?89 2.27376 7.19027 5.77 33.2929 2.40208 7.59605 6.37 40.5769 2.52389 7.98123 5.18 26.8324 2.27596 7.19722 5.78 33.4084 2.40416 7.60263 6.38 40.7044 2.52587 7.98749 5.19 26.9361 2.27816 7.20417 5.79 33.5241 2.40624 7.60920 6.39 40.8321 2.52784 7.99375 5.20 27.0400 2.28035 7.21110 5.80 33.6400 2.40832 7.61577 6.40 40.9600 2.52982 8.00000 N iV* Vn VlON N N * Vn VlON N AP Vn VlOiV 38 SQUARES AND SQUARE ROOTS N Vn VlON N Vn VlQN N hP Vn VlQN 6.40 40.9600 2.52982 8.00000 7.00 49.0000 2.64575 8.36660 7.60 57.7600 2.75681 8.71780 6.41 41.0881 2.53180 8.00625 7.01 49.1401 2.64764 8.37257 7.61 57.9121 2.75862 8.72353 6.42 41.2164 2.53377 8.01249 7.02 49.2804 2.64953 8.37854 7.62 58.0644 2.76043 8.72926 6.43 41.3449 2.53574 8.01873 7.03 49.4209 2.65141 8.38451 7.63 58.2169 2.76225 8.73499 6.44 41.4736 2.53772 8.02496 7.04 49.5616 2.65330 8.39047 7.64 58.3696 2.76405 8.74071 6.46 41.6025 2.53969 8.03119 7.06 49.7025 2.65518 8.39643 7.65 58.5225 2.76586 8.74643 6.46 41.7316 2.54165 8.03741 7.06 49.8436 2.65707 8.40238 7.66 58.6756 2.76767 8.75214 6.47 41.8609 2.54362 8.04363 7.07 49.9849 2.65895 8.40833 7.67 58.8289 2.76948 8.75785 6.48 41.9904 2.54558 8.04984 7.08 50.1264 2.66083 8.41427 7.68 58.9824 2.77128 8.76356 6.49 42.1201 2.54755 8.05605 7.09 50.2681 2.66271 8.42021 7.69 59.1361 2.77308 8.76926 6.60 42.2500 2.54951 8.06226 7.10 50.4100 2.66458 8.42615 7.70 59.2900 2.77489 8.77496 6.51 42.3801 2.55147 8.06846 7.11 50.5521 2.66646 8.43208 7.71 59.4441 2.77669 8.78066 6.52 42.5104 2.55343 8.07465 7.12 50.6944 2.66833 8.43801 7.72 59.5984 2.77849 8.78635 6.53 42.6409 2.55539 8.08084 7.13 50.8369 2.67021 8.44393 7.73 59.7529 2.78029 8.79204 6.54 42.7716 2.55734 8.08703 7.14 50.9796 2.67208 8.44985 7.74 59.9076 2.78209 8.79773 6.66 42.9025 2.55930 8.09321 7.15 51.1225 2.67395 8.45577 7.75 60.0625 2.78388 8.80341 6.56 43.0336 2.56125 8.09938 7.16 51.2656 2.67582 8.46168 7.76 60.2176 2.78568 8.80909 6.57 43.1649 2.56320 8.10555 7.17 51.4089 2.67769 8.46759 7.77 60.3729 2.78747 8.81476 6.58 43.2964 .2.56515 8.11172 7.18 51.5524 2.67955 8.47349 7.78 60.5284 2.78927 8.82043 6.59 43.4281 2.56710 8.11788 7.19 51.6961 2.68142 8.47939 7.79 60.6841 2.79106 8.82610 6.60 43.5600 2.56905 8.12404 7.20 51.8400 2.68328 8.48528 7.80 60.8400 2.79285 8.83176 6.61 43.6921 2.57099 8.13019 7.21 51.9841 2.68514 8.49117 7.81 60.9961 2.79464 8.83742 6.62 43.8244 2.57294 8.13634 7.22 52.1284 2.68701 8.49706 7.82 61.1524 2.79643 8.84308 6.63 43.9569 2.57488 8.14248 7.23 52.2729 2.68887 8.50294 7.83 61.3089 2.79821 8.84873 6.64 44.0896 2.57682 8.14862 7.24 52.4176 2.69072 8.50882 7.84 61.4656 2.80000 8.85438 6.66 44.2225 2.57876 8.15475 7.25 52.5625 2.69258 8.51469 7.85 61.6225 2.80179 8.86002 6.66 44.3556 2.58070 8.16088 7.26 52.7076 2.69444 8.52056 7.86 61.7796 2.80357 8.86566 6.67 44.4889 2.58263 8.16701 7.27 52.8529 2.69629 8.52643 7.87 61.9369 2.80535 8.87130 6.68 44.6224 2.58457 8.17313 7.28 52.9984 2.69815 8.53229 7.88 62.0944 2.80713 8.87694 6.69 44.7561 2.58650 8.17924 7.29 53.1441 2.70000 8.63815 7.89 62.2521 2.80891 8.88257 6.70 44.8900 2.58844 8.18535 7.30 53.2900 2.70185 8.54400 7.90 62.4100 2.81069 8.88819 6.71 45.0241 2.59037 8.19146 7.31 53.4361 2.70370 8.54985 7.91 62.5681 2.81247 8.89382 6.72 45.1584 2.59230 8.19756 7.32 53.5824 2.70555 8.55570 7.92 62.7264 2.81425 8.89944 6.73 45.2929 2.59422 8.20366 7.33 53.7289 2.70740 8.56154 7.93 62.8849 2.81603 8.90505 6.74 45.4276 2.59615 8.20975 7.34 53.8756 2.70924 8.56738 7.94 63.0436 2.81780 8.91067 6.75 45.5625 2.59808 8.21584 7.35 54.0225 2.71109 8.57321 7.95 63.2025 2.81957 8.91628 6.76 45.6976 2.60000 8.22192 7.36 54.1696 2.71293 8.57904 7.96 63.3616 2.82135 8.92188 6.77 45.8329 2.60192 8 22800 7.37 54.3169 2.71477 8.58487 7.97 63.. 5209 2.82312 8.92749 6.78 45.9684 2.60384 8.23408 7..38 54.4644 2.71662 8.59069 7.98 63.6804 2.82489 8.93308 6.79 46.1041 2.60576 8.24015 7.39 54.6121 2.71846 8.59651 7.99 63.8401 2.82666 8.93868 6.80 46.2400 2.60768 8.24621 7.40 54.7600 2.72029 8.60233 8.00 64.0000 2.82843 8.94427 6.81 46.3761 2.60960 8.25227 7.41 54.9081 2.72213 8.60814 8.01 64.1601 2.83019 8.94986 6.82 46.5124 2.61151 8.25833 7.42 55.0564 2.72397 8.61394 8.02 64.3204 2.83196 8.95545 6.83 46.6489 2.61343 8.26438 7.43 55.2049 2.72580 8.61974 8.03 64.4809 2.83373 8.96103 6.84 46.7856 2.61534 8.27043 7.44 55.3536 2.72764 8.62554 8.04 64.6416 2.83549 8.96660 6.85 46.9225 2.61725 8.27647 7.45 55.5025 2.72947 8.63134 8.05 64.8025 2.83725 8.97218 6.86 47.0596 2.61916 8.28251 7.46 55.6516 2.73130 8.63713 8.06 64.9636 2.83901 8.97775 6.87 47.1969 2.62107 8.28855 7.47 55.8009 2.73313 8.64292 8.07 65.1249 2. S 4077 8.98332 6.88 47.3344 2.62298 8.29458 7.48 55.9504 2.73496 8.64870 8.08 65.2864 2.84253 8.98888 6.89 47.4721 2.62488 8.30060 7.49 56.1001 2.73679 8.65448 8.09 65.4481 2.84429 8.99444 6.90 47.6100 2.62679 8.30662 7.60 56.2500 2.73861 8.66025 8.10 65.6100 2.84605 9.00000 6.91 47.7481 2.62869 8.31264 7.51 56.4001 2.74044 8.66603 8.11 65.7721 2.84781 9.00555 6.92 47.8864 2.63059 8.31865 7.52 56.5504 2.74226 8.67179 8.12 65.9344 2.84956 9.01110 6.93 48.0249 2.63249 8.32466 7.53 56.7009 2.74408 8.67756 8.13 66.0969 2.85132 9.01 tit i.'-j 6.94 48.1636 2.63439 8.33067 7.54 56.8516 2.74591 8.68332 8.14 66.2596 2.85307 9.02219 6.95 48.3025 2.63629 8.33667 7.65 57.0025* 2.74773 8.68907 8.15 66.4225 2.85482 9.02774 6.96 48.4416 2.63818 8.34266 7.56 57.1536 2.74955 8.69483 8.16 66.5856 2.85657 9.03.327 6.97 48.5809 2.64008 8.34865 7.57 57.3049 2.75136 8.70057 8.17 66.7489 2.858.32 9 ():^^^l 6.98 48.7204 2.64197 8.35464 7.58 57.4564 2.75318 8.70632 8.18 66.9124 2.86007 9.1)4431 6.99 48.8601 2.64386 8.36062 7.59 57.6081 2.75500 8.71206 8.19 67.0761 2.861.82 9 h 19 mp 7.00 49.0000 2.64575 8.36660 7.60 57.7600 2.75681 8.71780 8.20 67.2400 2.86356 9.11.', .5.39 N Vn VlOiV N N^ Vn V\0N N N^ Vn VlON SQUARES AND SQUARE ROOTS N N2 Vn VlON N N^ Vn VlON N N^ Vn VlON 8.20 67.2400 2.86356 9.05539 8.80 77.4400 2.96648 9.38083 9.40 88.3600 3.06594 9.69536 8.21 67.4041 2.86531 9.06091 8.81 77.6161 2.96816 9.38616 9.41 88.5481 3.06757 9.70052 8.22 67.5684 2.86705 9.06642 8.82 77.7924 2.96985 9.39149 9.42 88.7364 3.06920 9.70567 8.23 67.7329 2.86880 9.07193 8.83 77.9689 2.97153 9.39681 9.43 88.9249 3.07083 9.71082 8.24 67.8976 2.87054 9.07744 8.84 78.1456 2.97321 9.40213 9.44 89.1136 3.07246 9.71597 8.25 68.0625 2.87228 9.08295 8.85 78.3225 2.97489 9.40744 9.45 89.3025 3.07409 9.72111 8.26 , 68.2276 2.87402 9.08845 8.86 78.4996 2.97658 9.41276 9.46 89.4916 3.07571 9.72625 8.27 68.3929 2.87576 9.09395 8.87 78.6769 2.97825 9.41807 9.47 89.6809 3.07734 9.73139 8.28 68.5584 2.87750 9.09945 8.88 78.8544 2.97993 9.42338 9.48 89.8704 3.07896 9.73653 8.29 68.7241 2.87924 9.10494 8.89 79.0321 2.98161 9.42868 9.49 90.0601 3.08058 9.74166 8.30 68.8900 2.88097 9.11043 8.90 79.2100 2.98329 9.43398 9.50 90.2500 3.08221 9.74679 8.31 69.0561 2.88271 9.11592 8.91 79..3881 2.98496 9.43928 9.51 90.4401 3.08383 9.75192 8.32 69.2224 2.88444 9.12140 8.92 79.5664 2.98664 9.44458 9.52 90.6304 3.08545 9.75705 8.33 69.3889 2.88617 9.12688 8.93 79.7449 2.98831 9.44987 9.53 90.8209 3.08707 9.76217 8.34 69.5556 2.88791 9.13236 8.94 79.9236 2.98998 9.45516 9.54 91.0116 3.08869 9.76729 8.35 69.7225 2.88964 9.13783 8.95 80.1025 2.99166 9.46044 9.55 91.2025 3.09031 9.77241 8.36 69.8896 2.89137 9.14330 8.96 80.2816 2.99333 9.46573 9.56 91.3936 3.09192 9.77753 8.37 70.0569 2.89310 9.14877 8.97 80.4609 2.99500 9.47101 9.57 91.5849 3.09354 9.78264 8.38 70.2244 2.89482 9.15423 8.98 80.6404 2.99666 9.47629 9.58 91.7764 3.09516 9.78775 8.39 70.3921 2.89655 9.15969 8.99 80.8201 2*99833 9.48156 9.59 91.9681 3.09677 9.79285 8.40 70.5600 2.89828 9.16515 9.00 81.0000 3.00000 9.48683 9.60 92.1600 3.09839 9.79796 8.41 70.7281 2.90000 9.17061 9.01 81.1801 3.00167 9.49210 9.61 92.3521 3.10000 9.80306 8.42 70.8964 2.90172 9.17606 9.02 81.3604 3.00333 9.49737 9.62 92.5444 3.10161 9.80816 8.43 71.0649 2.90345 9.18150 9.03 81.5409 3.00500 9.50263 9.63 92.7369 3.10322 9.81326 8.44 71.2336 2.90517 9.18695 9.04 81.7216 3.00666 9.50789 9.64 92.9296 3.10483 9.81835 8.45 71.4025 2.90689 9.19239 9.05 81.9025 3.00832 9.51315 9.65 93.1225 3.10644 9.82344 8.46 71.5716 2.90861 9.19783 9.06 82.0836 3.00998 9.51840 9.66 93.3156 3.10805 9.82853 8.47 71.7409 2.91033 9.20326 9.07 82.2649 3.01164 9.52365 9.67 93.5089 3.10966 9.83362 8.48 71.9104 2.91204 9.20889 9.08 82.4464 3.01330 9.52890 9.68 93.7024 3.11127 9.83870 8.49 72.0801 2.91376 9.21412 9.09 82.6281 3.01496 9.53415 9.69 93.8961 3.11288 9.84378 8.50 72.2500 2.91548 9.21954 9.10 82.8100 3.01662 9.53939 9.70 94.0900 3.11448 9.84886 8.51 72.4201 2.91719 9.22497 9.11 82.9921 3.01828 9.54463 9.71 94.2841 3.11609 9.85393 8.52 72.5904 2.91890 9.23038 9.12 83.1744 3.01993 9.54987 9.72 94.4784 3.11769 9.85901 8.53 72.7609 2.92082 9.23580 9.13 83.3569 3.02159 9.55510 9.73 94.6729 3.11929 9.86408 8.54 72.9316 2.92233 9.24121 9.14 83.5396 3.02324 9.56033 9.74 94.8676 3.12090 9.86914 8.55 73.1025 2.92404 9.24662 9.15 83.7225 3.02490 9.56556 9.75 95.0625 3.12250 9.87421 8.56 73.2736 2.92575 9.25203 9.16 83.9056 3.02655 9.57079 9.76 95.2576 3.12410 9.87927 8.57 73.4449 2.92746 9.25743 9.17 84.0889 3.02820 9.57601 9.77 95.4529 3.12570 9.88433 8.58 73.6164 2.92916 9.26283 9.18 84.2724 3.02985 9.58123 9.78 95.6484 3.12730 9.88939 8.59 73.7881 2.93087 9.26823 9.19 84.4561 3.03150 9.58645 9.79 95.8441 3.12890 9.89444 8.60 73.9600 2.93258 9.27362 9.20 84.6400 3.03315 9.59166 9.80 96.0400 3.13050 9.89949 8.61 74.1321 2.93428 9.27901 9.21 84.8241 3.03480 9.59687 9.81 96.2361 3.13209 9.90454 8.62 74.3044 2.93598 9.28440 9.22 85.0084 3.03645 9.60208 9.82 96.4324 3.13369 9.90959 8.63 74.4769 2.93769 9.28978 9.23 85.1929 3.03809 9.60729 9.83 96.6289 3.13528 9.91464 8.64 74.6496 2.93939 9.29516 9. 24 ' 85.3776 3.03974 9.61249 9.84 96.8256 3.13688 9.91968 8.65 74.8225 2.94109 9.30054 9.25 85.5625 3.04138 9.61769 9.85 97.0225 3.13847 9.92472 8.66 74.9956 2.94279 9.30591 9.26 85.7476 3.04302 9.62289 9.86 97.2196 3.14006 9.92975 8.67 75.1689 2.94449 9.31128 9.27 85.9329 3.04467 9.62808 9.87 97.4169 3.14166 9.93479 8.68 75.3424 2.94618 9.31665 9.28 86 1184 3.04631 9.63328 9.88 97.6144 3.14325 9.93982 8.69 75.5161 2.94788 9.32202 9.29 86.3041 3.04795 9.63846 9.89 97.8121 3.14484 9.94485 8.70 75.6900 2.94958 9.32738 9.30 86.4900 3.04959 9.64365 9.90 98.0100 3.14643 9.94987 8.71 75.8641 2.95127 9.33274 9.31 86.6761 3.05123 9.64883 9.91 98.2081 3.14802 9.95490 8.72 76.0384 2.95296 9.33809 9.32 86.8624 3.05287 9.65401 9.92 98.4064 3.14960 9.95992 8.73 76.2129 2.95466 9.34345 9.33 87.0489 3.05450 9.65919 9.93 98.6049 3.15119 9.96494 8.74 76.3876 2.95635 9.34880 9.34 87.2356 3.05614 9.66437 9.94 98.8036 3.15278 9.96995 8.75 76.5625 2.95804 9.35414 9.35 87.4225 3.05778 9.66954 9.95 99.0025 3.15436 9.97497 8.76 76.7376 2.95973 9.35949 9.36 87.6096 3.05941 9.67471 9.96 99.2016 3.15595 9.97998 8.77 76.9129 2.96142 9.36483 9.37 87.7969 3.06105 9.67988 9.97 99.4009 3.15753 9.98499 8.78 77.0884 2.96311 9.37017 9.38 87.9844 3.06268 9.68504 9.98 99.6004 3.15911 9.98999 8.79 77.2641 2.96479 9.37550 9.39 88.1721 3.06431 9.69020 9.99 99.8001 3.16070 9.99500 8.80 77.4400 2.96648 9.38083 9.40 88.3600 3.06594 9.69536 10.00 100.000 3.16228 10.0000 N Ni Vn VlON N N^ Vn VlOiV N AT* Vn VlON 40 VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS Note; If 0 < X < .01 the value for e can be found by the use of (1-x) or the value for e^ can be found by the use of (1 + x). X Q-X Value ■ - X Value Value Logio Value Logic 0 00 1. 0000 .00000 1 .00000 0.50 1. 6487 .21715 .60653 0.01 1 .0101 .00434 .99005 0.51 1. 6653 .22149 .60050 0.02 1 .0202 .00869 .98020 0.52 1. 6820 .22583 .59452 0.03 1 .0305 .01303 .97045 0.53 1. 6989 .23018 . 58860 0.04 1 .0408 .01737 .96079 0.54 1.7160 . 23452 .58275 0.05 1 .0513 .02171 .95123 0.55 1. 7333 .23886 .57695 0.06 1 .0618 .02606 .94176 0.56 1.7507 . 24320 .57121 0.07 1.0725 .03040 .93239 0.57 1 .7683 .24755 . 56553 0.08 1 .0833 .03474 .92312 0.58 1. 7860 .25189 . 55990 0.09 1 .0942 ,03909 .91393 0.59 1. 8040 .25623 . 55433 0.10 1 .1052 .04343 .90484 0.60 1 .8221 .26058 .54881 0.11 1.1163 .04777 .89583 0.61 1 .8404 .26492 .54335 0.12 1.1275 .05212 .88692 0.62 1 .8589 .26926 . 53794 0.13 1 .1388 .05646 .87809 0.63 1. 8776 .27361 . 53259 0.14 1 .1503 . 06080 .86936 0.64 1 .8965 .27795 . 52729 0.15 1 .1618 .06514 .86071 0.65 1.9155 .28229 . 52205 0.16 1.1735 .06949 .85214 0.66 1 .9348 . 28664 .51 685 0.17 1. 1 853 .07383 . 84366 0.67 1.9542 .29098 .51171 0.18 1. 1 972 .07817 .83527 0.68 1. 9739 .29532 .50662 0.19 1.2092 .08252 .82696 0.69 1. 9937 .29966 .50158 0.20 1 .2214 .08686 .81873 0.70 2.0138 . 30401 .49659 0.21 1 .2337 .09120 .81058 0.71 2.0340 .30835 .49164 0.22 1 .2461 .09554 .80252 0.72 2.0544 .31269 .48675 0.23 1.2586 .09989 .79453 0.73 2.0751 .31703 .48191 0.24 1 .2712 .10423 .78663 0.74 2.0959 .32138 .47711 0.25 1 .2840 .10857 .77880 0.75 2.1170 .32572 .47237 0.26 1.2969 .11292 .77105 0.76 2.1383 . 33006 .46767 0.27 1 .3100 .11726 .76338 0.77 2.1598 .33441 .46301 0.28 1.3231 .12160 .75578 0.78 2.1815 .33875 .45841 0.29 1.3364 .12595 .74826 0.79 2.2034 . 34309 .45384 0.30 1.3499 . 1 3029 .74082 0.80 2.2255 . 34744 .44933 0.31 1. 3634 .13463 .73345 0.81 2.2479 .35178 .44486 0.32 1.3771 .13897 .72615 0.82 2.2705 . 3561 2 .44043 0.33 1 .3910 .14332 .71892 0.83 2.2933 . 36046 .43605 0.34 1 .4049 .14766 .71177 0.84 2.31 64 . 36481 .43171 0.35 1 .4191 . 1 5200 .70469 0.85 2.3396 . 3691 5 .42741 0.36 1 .4333 .15635 .69768 0.86 2.3632 .37349 .42316 0.37 1 .4477 .16069 .69073 0.87 2.3869 . 37784 .41895 0.38 1.4623 .16503 .68386 0.88 2.4109 .38218 .41478 0.39 1 .4770 .16937 .67706 0.89 2.4351 . 38652 .41066 0.40 1 .4918 .17372 .67032 0.90 2.4596 . 39087 . 40657 0.41 1 .5068 .17806 .66365 0.91 2.4843 . 39521 .40252 0.42 1. 5220 .18240 .65705 0.92 2.5093 . 39955 . 39852 0.43 1. 5373 .18675 .65051 0.93 2.5345 . 40389 .39455 0.44 1. 5527 • .19109 . 64404 0.94 2.5600 . 40824 . 39063 0.45 1. 5683 .19543 .63763 0.95 2. 5857 .41258 .38674 0.46 1. 5841 .19978 .63128 0.96 2.6117 .41692 . 38289 0.47 1. 6000 .20412 .62500 0.97 2. 6379 .42127 . 37908 0.48 1 .6161 .20846 .61878 0.98 2.6645 .42561 .37531 0.49 1.6323 .21280 .61263 0.99 2.6912 .42995 .37158 0.50 1. 6487 .21715 .60653 1 .00 2.7183 .43429 .36788 373-062 O 70 - 4 X erx Value X C* er* Value Value Log,o Value Logic 1 .00 2.7183 .43429 .36788 1.50 4.4817 .65144 .22313 1.01 2.7456 .43864 .36422 1.51 4. 5267 .65578 .22091 1.02 2.7732 .44298 .36060 1.52 4.5722 .66013 .21871 1.03 2.8011 .44732 .35701 1.53 4.6182 .66447 .21654 1.04 2.8292 .45167 .35345 1.54 4.6646 .66881 .21438 1.05 2.8577 .45601 .34994 1.55 4.7115 .67316 .21225 1.06 2.8864 .46035 .34646 1 56 4.7588 .67750 .21014 1 .07 2.9154 .46470 .34301 1.57 4.8066 .68184 .20805 1.08 2.9447 .46904 .33960 1.58 4.8550 .68619 .20598 1.09 2.9743 .47338 .33622 1.59 4.9037 .69053 .20393 1 .10 3.0042 .47772 .33287 1.60 4.9530 .69487 .20190 1.11 3.0344 .48207 . 32956 1.61 5.0028 .69921 .19989 1.12 3.0649 .48641 .32628 1 .62 5.0531 .70356 .19790 1. 13 3.0957 .49075 .32303 1.63 5.1039 .70790 .19593 1.14 3.1268 .49510 .31982 1 .64 5.1552 .71224 .19398 1.15 3.1582 .49944 .31664 1.65 5.2070 .71659 .19205 1.16 3.1899 . 50378 .31349 1.66 5.2593 .72093 .19014 1 .17 3.2220 .50812 .31037 1 .67 5.3122 . 72527 .18825 1.18 3.2544 .51247 .30728 1.68 5.3656 .72961 .18637 1.19 3.2871 .51681 . 30422 1.69 5.4195 .73396 .18452 1.20 3.3201 .52115 .30119 1.70 5.4739 .73830 .18268 1 .21 3.3535 .52550 .29820 1.71 5.5290 .74264 .18087 1 .22 3.3872 .52984 .29523 1.72 5.5845 .74699 . 1 7907 1 .23 3.4212 .53418 .29229 1.73 5.6407 .75133 .17728 1 .24 3.4556 .53853 .28938 1.74 5.6973 .75567 .17552 1 .25 3.4903 . 54287 .28650 1.75 5.7546 .76002 .17377 1 .26 3.5254 .54721 .28365 1.76 5.8124 .76436 .17204 1 .27 3.5609 . 551 55 .28083 1.77 5.8709 .76870 .17033 1.28 3.5966 .55590 .27804 1.78 5.9299 .77304 .16864 1.29 3.6328 . 56024 .27527 1.79 5.9895 .77739 .16696 1 .30 3.6693 .56458 .27253 1.80 6.0496 .78173 .16530 1.31 3.7062 .56893 .26982 1.81 6.1104 .78607 .16365 1.32 3.7434 . 57327 .26714 1.82 6.1719 .79042 .16203 1.33 3.7810 .57761 .26448 1.83 6.2339 .79476 .16041 1.34 3.8190 .58195 .26185 1 .84 6.2965 .79910 . 1 5882 1.35 3.8574 . 58630 .25924 1 .85 6.3598 .80344 . 1 5724 1.36 3.8962 . 59064 .25666 1 .86 6.4237 .80779 . 1 5567 1.37 3.9354 .69498 .25411 1.87 6.4883 .81213 .15412 1.38 3.9749 . 59933 .25158 1 .88 6. 5535 .81647 , 1 5259 1.39 4.0149 . 60367 .24908 1.89 6.6194 .82082 . 1 51 07 1 .40 4.0552 .60801 .24660 1.90 6.6859 .82516 .14957 1.41 4.0960 .61236 .24414 1 .91 6.7531 .82950 .14808 1.42 4.1371 .61670 .24171 1.92 6.8210 .83385 14661 1.43 4.1787 .62104 .23931 1.93 6.8895 .83819 .'14515 1 .44 4.2207 .62538 .23693 1 .94 6.9588 .84253 . 14370 1 .45 4.2631 .62973 .23457 1.95 7.0287 .84687 .14227 1 .46 4.3060 . 63407 .23224 1.96 7.0993 .85122 .14036 1.47 4.3492 .63841 . 22993 1.97 7.1707 . 85556 . 1 3946 1 .48 4.3929 .64276 .22764 1 .98 7.2427 . 85990 .13807 1 .49 4.4371 .64710 .22537 1.99 7.3155 .86425 .13670 1 .50 4.4817 .65144 .22313 2.00 7.3891 . 86859 .13534 X r-* Value X e* erx Value Value Value Logic 2.00 7.3891 .86859 .13534 2.50 12.182 1 .08574 .08208 2.01 7.4633 .87293 .13399 2.51 12.305 1 .09008 .08127 2.02 7. 5383 .87727 .13266 2.52 12.429 1 .09442 .08046 2.03 7.6141 .88162 .13134 2.53 12.554 1 .09877 .07966 2.04 7.6906 . 88596 .13003 2.54 12.680 1 .10311 .07887 2.05 7.7679 .89030 .12873 2.55 12.807 1 .10745 .07808 2.06 7.8460 . 89465 .12745 2.56 12.936 1 .11179 .07730 2.07 7. 9248 .89899 .12619 2.57 13.066 1 .11614 .07654 2.06 8.0045 .90333 .12493 2.58 13.197 1 .12048 .07577 2.09 8.0849 .90768 .12369 2.59 13.330 1 .12482 .07502 2.10 8.1662 .91202 .12246 2.60 13.464 1 .12917 .07427 2.11 8.2482 .91636 .12124 2.61 13.599 1 .13351 .07353 2.12 8.3311 . 92070 .12003 2.62 13.736 1 .13785 .07280 2.13 8.4149 .92505 .11884 2.63 13.874 1 .14219 .07208 2.14 8.4994 .92939 .11765 2.64 14.013 1 .14654 .07136 2.15 8.5849 .93373 .11648 2.65 14.154 1. 1 5088 .07065 2.16 8.6711 .93808 .11533 2.66 14.296 1. 1 5522 .06995 2.17 8.7583 .94242 .11418 2.67 14.440 1. 1 5957 .06925 2.18 8.8463 .94676 .11304 2.68 14.585 1 .16391 .06856 2.19 8.9352 .95110 .11192 2.69 14.732 1.16825 .06788 2.20 9.0250 .95545 .11080 2.70 14.880 1 .17260 .06721 2.21 9.1157 . 95979 .10970 2.71 15.029 1 .17694 .06654 2.22 9.2073 .96413 .10861 2.72 15.180 1 .18128 .06587 2.23 9.2999 . 96848 .10753 2.73 15.333 1 .18562 .06522 2.24 9.3933 . 97282 .10646 2.74 15.487 1.18997 .06457 2.25 9.4877 .97716 .10540 2.75 15.643 1 .19431 .06393 2.26 9.5831 .98151 .10435 2.76 15.800 1 .19865 .06329 2.27 9.6794 . 98585 .10331 2.77 15.959 1 .20300 .06266 2.28 9.7767 .99019 .10228 2.78 16.119 1 .20734 .06204 2.29 9. 8749 . 99453 .10127 2.79 16.281 1 .21168 .06142 2.30 9. 9742 . 99888 .10026 2.80 16.445 1 .21602 .06081 2.31 10.074 1. 00322 .09926 2.81 16.610 1 .22037 .06020 2.32 10.176 1 .00756 .09827 2.82 16.777 1 .22471 .05961 2.33 10.278 1 .01191 .09730 2.83 16.945 1 .22905 .05901 2.34 10.381 1 .01625 . 09633 2.84 17.116 1 .23340 .05843 2.35 10.486 1 .02059 .09537 2.85 17.288 1 .23774 .05784 2.36 10.591 1 .02493 . 09442 2.86 17.462 1 .24208 .05727 2.37 10.697 1 .02928 . 09348 2.87 17.637 1 .24643 .056 70 2.38 10.805 1. 03362 . 09255 2.88 17.814 1 .25077 .05613 2.39 10.913 1 .03796 .09163 2.89 17.993 1 .25511 .05558 2.40 11.023 1 .04231 .09072 2.90 18.174 1 .25945 .05502 2.41 1 1. 1 34 1 .04665 .08982 2.91 18.357 1 .26380 .05448 2.42 11.246 1 .05099 . 08892 2.92 18.541 1 .26814 .05393 2.43 11.359 1 .05534 . 08804 2.93 18.728 1 .27248 .05340 2.44 11 .473 1. 05968 .08716 2.94 18.916 1 .27683 .05287 2.45 11.588 1. 06402 . 08629 2.95 19.106 1 .28117 .05234 2.46 11.705 1. 06836 .08543 2.96 19.298 1 .28551 .05182 2.47 11.822 1 .07271 .08458 2.97 19.492 1 .28985 .05130 2.48 11.941 1 .07705 .08374 2.98 19.688 1 .29420 .05079 2.49 12.061 1. 081 39 .08291 2.99 19.886 1 .29854 .05029 2.50 12.182 1. 08574 . 08208 3.00 20.086 1. 30288 .04979 X C* Value Value Log 10 3.00 20.086 1. 30288 .04979 3.05 21.115 1. 32460 . 04736 3.10 22.198 1. 34631 . 04505 3.15 23.336 1. 36803 .04285 3.20 24.533 1 .38974 .04076 3.25 25.790 1 .41146 .03877 3.30 27.113 1 .43317 .03688 3.35 28.503 1. 45489 .03508 3.40 29.964 1 .47660 .03337 3.45 31.500 1 .49832 .03175 3.50 33.115 1. 52003 .03020 3.55 34.813 1.54175 .02872 3.60 36. 598 1. 56346 .02732 3.65 38.475 1 .58517 .02599 3.70 40.447 1 .60689 .02472 3.75 42.521 1 .62860 .02352 3.80 44.701 1 .65032 . 02237 3.85 46.993 1 .67203 .02128 3.90 49.402 1 .69375 .02024 3.95 51.935 1 .71546 .01925 4.00 54. 598 1 .73718 .01832 4.10 60.340 1 .78061 .01657 4.20 66.686 1 .82404 .01500 4.30 73.700 1 .86747 .01357 4.40 81 .451 1 .91090 .01227 4.50 90.017 1 .95433 .01111 4.60 99.484 1 .99775 .01005 4.70 109.95 2.04118 .00910 4.80 121 .51 2.08461 . 00823 4.90 134.29 2.12804 .00745 5.00 148.41 2.17147 .00674 5.10 164.02 2.21490 .00610 5.20 181 .27 2.25833 .00552 5.30 200.34 2.30176 .00499 5.40 221.41 2.34519 .00452 5.50 244.69 2.38862 .00409 5.60 270.43 2.43205 .00370 5.70 298. 87 2.47548 .00335 5.80 330.30 2.51891 .00303 5.90 365.04 2.56234 . 00274 6.00 403.43 2.60577 .00248 6.25 518.01 2.71434 .00193 6.50 665.14 2.82291 .00150 6.75 854.06 2.93149 .00117 7.00 1096.6 3.04006 .00091 7.50 1808.0 3.25721 .00055 8.00 2981.0 3.47436 .00034 8.50 4914.8 3.69150 .00020 9.00 8103.1 3.90865 .00012 9.50 13360. 4.12580 .00007 10.00 22026. 4.34294 .00005 THREE-PLACE VALUES OF TRIGONOMETRIC FUNCTIONS AND DEGREES IN RADIAN MEASURE Rad. Deg. Sin Tan Sec Csc Cot Cos Deg. Rad. .000 0° .000 .000 1.000 1.000 90° 1.571 .017 1° .017 .017 1.000 57.30 57.29 1.000 89° 1.553 .0.'35 2° .035 .035 1.001 28.65 28.64 0.999 88° 1.536 .052 3° .052 .052 1.001 19.11 19.08 .999 87° 1.518 .070 4° .070 .070 1.002 14.34 14.30 .998 86° 1.501 .087 5° .087 .087 1.004 11.47 11.43 .996 85° 1.484 .105 6° .105 .105 1.006 9.567 9.514 .995 84° 1.466 .122 7° .122 .123 1.008 8.206 8.144 .993 83° 1.449 .140 8° .139 .141 1.010 7.185 7.115 .990 82° 1.431 .157 9° .156 .158 1.012 6.392 6.314 .988 81° 1.414 .175 10° .174 .176 1.015 5.759 5.671 .985 80° 1.396 .192 11° .191 .194 1.019 5.241 5.145 .982 79° 1.379 .209 12° .208 .213 1.022 4.810 4.705 .978 78° 1.361 .227 13° .225 .231 1.026 4.445 4.331 .974 77° 1.344 .244 14° .242 .249 1.031 4.134 4.011 .970 76° 1.326 .262 15° .259 .268 1.035 3.864 3.732 .966 75° 1.309 .279 16° .276 .287 1.040 3.628 3.487 .961 74° 1.292 .297 17° .292 .306 1.046 3.420 3.271 .956 73° 1.274 .314 18° .309 .325 1.051 3.236 3.078 .951 72° 1.257 .332 19° .326 .344 1.058 3.072 2.904 .946 71° 1.239 .349 20° .342 .364 1.064 2.924 2.747 .940 70° 1.222 .367 21° .358 .384 1.071 2.790 2.605 .934 69° 1.204 .384 22° .375 .404 1.079 2.669 2.475 .927 68° 1.187 .401 23° .391 .424 1.086 2.559 2.356 .921 67° 1.169 .419 24° .407 .445 1.095 2.459 2.246 .914 66° 1.152 .436 25° .423 .466 1.103 2.366 2.145 .906 65° 1.134 .454 26° .438 .488 1.113 2.281 2.050 .899 64° 1.117 .471 27° .454 .510 1.122 2.203 1.963 .891 63° 1.100 .489 28° .469 .532 1.133 2.130 1.881 .883 62° 1 .082 .506 29° .485 .554 1.143 2.063 1.804 .875 61° 1 .065 .524 30° .500 .577 1.155 2.000 1.732 .866 60° 1.047 .541 31° .515 .601 1.167 1.942 1.664 .857 59° 1 .030 .559 32° .530 .625 1.179 1.887 1.600 .848 58° 1.012 .576 33° .545 .649 1.192 1.836 1.540 .839 57° 0.995 .593 34° .559 .675 1.206 1.788 1.483 .829 56° 0.977 .611 35° .574 .700 1.221 1.743 1.428 .819 55° 0.960 .628 36° .588 .727 1.236 1.701 1.376 .809 54° 0.942 .646 37° .602 .754 1.252 1.662 1.327 .799 53° 0.925 .663 38° .616 .781 1.269 1.624 1.280 .788 52° 0.90S .681 39° .629 .810 1.287 1.589 1.235 .777 51° 0..S90 .698 40° .643 .839 1.305 1.556 1.192 .766 50° 0.H73 .716 41° .656 .869 1.325 1.524 1.150 .755 49° 0.H.').5 .733 42° .669 .900 1.346 1.494 1.111 .743 48° 0..S3S .750 43° .682 .933 1.367 1.466 1.072 .731 47° O.SL’O .768 44° .695 0.966 1.390 1.440 1.036 .719 46° 0.K03 .785 45° .707 1.000 1.414 1.414 1.000 .707 45° 0.7S5 Rad. Deg. Cos Cot Csc Sec Tan Sin Deg. Rad. NATURAL (NAPIERIAN) LOGARITHMS The natural logarithm of a number is the index of the power to which the base e (2.7182818) must be raised in order to equal the number. Example: logg 4.12 = In 4.12 = 1.4159. The table gives the natural logarithms of numbers from 1.00 to 9.99 di- rectly, and permits finding logarithms of numbers outside that range by the addition or subtraction of the natural logarithms of powers of 10. Example: In 679. = In 6.79 + In 10^ = 1.9155 + 4.6052 = 6.5207 In 0.0679 = In 6.79 - In 10^ = 1.9155 - 4.6052 = - 2.6897 Natural Logarithms of 10^ In 10 = 2.302585 In 10^ = 9.210340 In 10 = 16.118096 In 10^ = 4.605170 In 10® = 11.512925 In 10® = 18.420681 In 10® = 6.907755 In 10® = 13.815511 In 10® = 20.723266 To obtain the common logarithm, the natural logarithm is multiplied by logio which is 0.434294, or logio A' = 0.434294 In M. .V 0 1 2 3 4 5 6 7 8 9 1.0 0 0000 0 0100 0 0198 0 0296 0 0392 0.0488 0 0583 0.0677 0. 0770 0 0862 1. 1 0 0953 0. 1044 0 1 133 0. 1222 0,1310 0 1398 0. 1484 0.1570 0. 1655 0.1740 1. 2 0 1823 0 1906 0 1989 0 2070 0 2151 0 2231 0. 231 1 0.2390 0.2469 0.2546 1.3 0 2624 0. 2700 0 2776 0.2852 0.2927 0.3001 0. 3075 0,3148 0. 3221 0.3293 1.4 0 3365 0 3436 0 3507 0 3577 0,3646 0.3716 0.3784 0.3853 0.3920 0 3988 1. 5 0 4055 0 4121 0 4187 0.4253 0.4313 0 4383 0. 4447 0.4511 0. 4574 0 4637 1.6 0 4700 0 4762 0 4824 0.4886 0.4947 0. 5008 0.5068 0.5128 0.5188 0.5247 1 7 0 5306 0 5365 0 5423 0.5481 0, 5539 0 5596 0 5653 0.5710 0 5766 0.5822 1. 8 0 5878 0. 5933 0 598.8 0 6043 0 6098 0 6152 0.6206 0.6259 0.6313 0.6366 1.9 0 6419 0.6471 0 6523 0.6575 0.6627 0.6678 0. 6729 0.6780 0.6831 0.6881 2 0 0 6931 0 6981 0 7031 0.7080 0.7129 0.7178 0.7227 0.7275 0.7324 0.7372 2 1 0 7419 0 7467 0 7514 0.7561 0 7608 0.7655 0 7701 0.7747 0.7793 0.7839 2.2 0 7885 0 7930 0 7975 0.8020 0. 8065 0.8109 0.8154 0,8198 0.8242 0.8286 2.3 0 8329 0 8372 0 8416 0.8459 0.8502 0. 8544 0.8587 0.8629 0.8671 0.8713 2.4 0 8755 0.8796 0 8838 0 8879 0 8920 0 8961 0.9002 0.9042 0.9083 0.9123 2 5 0 9163 0.9203 0 9243 0 9282 0 9322 0.9361 0 9400 0.9439 0.9478 0.9517 2.6 0 9555 0.9594 0 9632 0.9670 0.9708 0.9746 0.9783 0.9821 0.9858 0.9895 2 7 0 9933 0 9969 1 0006 1.0043 1. 0080 1.0116 1,0152 1.0188 1.0225 1.0260 2 8 1 0296 1,0332 1 0367 1, 0403 1.0438 1.0473 1.0508 1,0543 1.0578 1,0613 2.9 1 0647 1.0682 1 0716 1.0750 1.0784 1.0818 1.0852 1.0886 1.0919 1.0953 SO 1 0986 1 1019 1 1053 1.1086 1.1119 1.1151 1.1184 1.1217 1. 1249 1. 1282 3. 1 1 1314 1. 1346 1 1378 1.1410 1.1442 1.1474 1.1506 1. 1537 1.1569 1.1600 3.2 1 1632 1.1663 1 1694 1. 1725 1. 175 b 1, 1787 1.1817 1.1848 1.1878 1.1909 3.3 1 1939 1.1969 1 2000 1. 2030 1. 2060 1.2090 1.2119 1.2149 1.2179 1.2208 3.4 1 2238 1. 2267 1 2296 1. 2326 1.2355 1. 2384 1, 2413 1.2442 1.2470 1. 2499 3.5 1 2528 1.2556 1 2585 1.2613 1. 2641 1.2669 1.2698 1.2726 1.2754 1,2782 3.6 1 2809 1.2837 1 2865 1.2892 1.2920 1.2947 1.2975 1.3002 1.3029 1. 3056 3.7 1 3083 1.3110 1 3137 1.3164 1.3191 1.3218 1.3244 1.3271 1.3297 1.3324 3.8 1. 3350 1.3376 1 3403 1.3429 1.3455 1.3481 1.3507 1.3533 1.3558 1.3584 3.9 1. 3610 1.3635 1 3661 1. 3686 1.3712 1.3737 1.3762 1.3788 1.3813 1.3838 4.0 1. 8863 1.3888 1 3913 1. 3938 1.3962 1.3987 1.4012 1.4036 1.4061 1.4086 4. 1 1. 41 10 1.4134 1 4159 1.4183 1.4207 1.4231 1.4255 1.4279 1.4303 1.4327 4.2 1. 4351 1.4375 1 4398 1.4422 1.4446 1. 4469 1.4493 1.4516 1.4540 1.4563 4.3 I. 4586 1. 4609 1 4633 1.4656 1. 4679 1.4702 1.4725 1.4748 1.4770 1.4793 4.4 1. 4816 1.4839 1 4861 1. 4884 I. 4907 1. 4929 1.4951 1. 4974 1. 4996 1.5019 4.5 1. 5041 1.5063 1. 5085 1.5107 1.5129 I.5I5I 1.5173 1.5195 1.5217 1.5239 4.6 1. 5261 1.5282 1. 5304 1.5326 1.5347 1. 5369 1.5390 1.5412 1.5433 1.5454 4.7 1 5476 1.5497 1. 5518 1.5539 1.5560 1.5581 1. 5602 1.5623 1. 5644 1. 5665 4.6 1 5686 1.5707 1. 5728 1.5748 1.5769 1.5790 1.5810 1.5831 1.5851 1.5872 4.9 1. 5892 1.5913 I. 5933 1.5953 1.5974 1.5994 1.6014 1.6034 1.6054 I. 6074 46 N 0 1 2 3 4 5 6 7 8 9 6 0 1 6094 1.6114 1.6134 1. 6164 1.6174 1. 6194 1.6214 1.6233 1.6853 1.6278 5. 1 1 6292 1.6312 1.6332 1.6351 1.6371 1.6390 1. 6409 1.6429 1.6448 1.6467 5 2 1.6487 1.6506 1.6525 1.6544 1.6563 1.6582 1.6601 1.6620 1.6639 1.6658 5.3 1.6677 1. 6696 1.6715 1.6734 1.6752 1.6771 1.6790 1.6808 1.6827 1.6845 5 4 1.6864 1.6882 1.6901 1.6919 1.6938 1.6956 1.6974 1.6993 1.701 1 1.7029 5.5 1.7047 1. 7066 1.7084 1.7102 1.7120 1.7138 1.7156 1. 7:74 1.7192 1.7210 5.6 1.7228 1.7246 1.7263 1.7281 1.7299 1.7317 1.7334 1.7352 1.7370 1.7387 5 7 1.7405 1.7422 1.7440 1.7457 1.7475 1.7492 1.7509 1.7527 1.7544 I. 7561 5.8 1.7579 1.7596 1.7613 1.7630 1.7647 1.7664 1.7681 1. 7699 1.7716 1.7733 5.9 1.7750 1.7766 1.7783 1.7800 1.7817 1.7834 1.7851 1.7867 1.7884 1.7901 6.0 1.7918 1.7934 1.7961 1.7967 1.7984 1.8001 1. 8017 1.8034 1.8050 1.8066 6 1 1.8083 1.8099 1.8116 1.8132 1.8148 1.8165 1.8181 1.8197 1.8213 1.8229 6 2 1.8245 1. 8262 1.8278 1.8294 1.8310 1.8326 1.8342 1.8358 1.8374 1.8390 6.3 1.8405 1.8421 1.8437 1.8453 1.8469 1.8485 1.8500 1.8516 1.8532 1.8547 6 4 1.8563 1.8579 1.8594 1.8610 1.8625 1.8641 1. 8656 1.8672 1.8687 1.8703 6 5 1.8718 1.8733 1.8749 1.8764 1.8779 1.8795 1.8810 1. 8825 1.8840 1.8856 0.6 1.8871 I. 8886 1.8901 1.8916 1.8931 1.8946 1.8961 1.8976 1.8991 1.9006 6 7 1.9021 1.9036 1.9051 1.9066 1.9031 1.9095 1.9110 1.9125 1.9140 1.9155 6.8 1.9169 1.9184 1.9199 1.9213 1.9228 1.9242 1.9257 1.9272 1.9286 1.9301 0.9 1.9315 1.9330 1.9344 1.9359 1.9373 1.9387 1.9402 1.9416 1.9430 1.9445 7.0 1.3469 1.9473 1.9488 1.9602 1.9616 1.9530 1. 9644 1.9559 1.9673 1.9587 7. 1 1.9601 I. 9615 1.9629 1.9643 1.9657 1.9671 1.9685 1.9699 1.9713 1.9727 7 2 1.9741 1.9755 1.9769 1.9782 1.9796 1.9810 1.9824 1.9338 1.9851 1.9865 7.3 1.9879 1.9892 1.9906 1.9920 1.9933 1.9947 1.9961 1.9974 1.9988 2.0001 7.4 2.0015 2.0028 2.0042 2,0055 2.0069 2.0082 2.0096 2.0109 2.0122 2.0136 7.5 2.0149 2,0162 2.0176 2,0189 2.0202 2.0215 2.0229 2.0242 2.0235 2.0263 7.6 2. 02^1 2.0295 2.0308 2.0321 2.0334 2.0347 2.0360 2.0373 2.0386 2.0399 7.7 2.0412 2.0425 2.0438 2.0451 2.0464 2.0477 2.0490 2.0503 2.0516 2.0528 7.8 2.0541 2.0554 2 0567 2.0580 2.0592 2.0605 2.0618 2.0631 2.0643 2.0656 7.9 2.0669 2.0631 2.0694 2.0707 2.0719 2.0732 2.0744 2.0757 2.0769 2.0782 8.0 2.0794 2.0807 2.0819 2.0832 2.0844 2.0857 2. 0869 2.0882 2.0894 2.0906 8. 1 2.0919 2.0931 2.0943 2.0956 2.0968 2.0980 2.0992 2. 1005 2. 1017 2. 1029 8.2 2. 1041 2. 1054 2. 1066 2. 1078 2. 1090 2. 1 102 2.1114 2.1126 2. 1 138 2.1150 8.3 2. 1163 2. 1175 2. 1187 2. 1199 2. 121 1 2. 1223 2.1235 2. 1247 2. 1258 2. 1270 8.4 2. 1232 2.1294 2. 1306 2. 1318 2.1330 2. 1342 2. 1353 2. 1365 2.1377 2.1389 8.5 2. 1401 2. 1412 2. 1424 2. 1436 2. 1448 2. 1459 2. 1471 2. 1483 2. 1494 2. 1506 6.6 2. 1518 2. 1529 2. 1541 2. 1552 2. 1564 2. 1576 2. 1587 2. 1599 2. 1610 2. 1622 8.7 2. 1633 2. 1645 2. 1656 2. 1668 2. 1679 2. 1691 2. 1702 2. 1713 2. 1725 2. 1736 8.8 2. 1748 2. 1759 2. 1770 2. 1782 2. 1793 2. 1804 2. 1815 2. 1327 2. 1838 2. 1849 8.9 2. 1861 2. 1872 2. 1883 2. 1894 2. 1905 2. 1917 2. 1928 2. 1939 2. 1950 2. 1961 9.0 2.1972 2.1983 2.1994 2.2006 2.2017 2.2028 2. 2039 2.2050 2.2061 2.2072 9. 1 2.2083 2.2094 2.2105 2.2116 2.2127 2.2138 2.2148 2.2159 2.2170 2.2181 9.2 2.2192 2.2203 2.2214 2.2225 2.2235 2.2246 2.2257 2.2263 2. 2279 2.2289 9.3 2.2300 2.2311 2.2322 2.2332 2.2343 2.2354 2.2364 2.2375 2.2380 2.2396 9.4 2.2407 2.2418 2.2428 2.2439 2.2450 2.2460 2. 2471 2. 2'*81 2.2492 2.2502 9.5 2.2513 2.2523 2.2534 2.2544 2.2555 2. 2565 2. 2576 2. 2586 2,2597 2.2607 9.6 2.2618 2.2628 2.2638 2.2649 2.2659 2.2670 2.2680 2. 2 o 90 2.2701 2.271 1 9.7 2.2721 2.2732 2.2742 2.2752 2.2762 2.2773 2.2763 2.2793 2.2803 2.2814 9.8 2.2824 2.2834 2.2844 2.2854 2.2865 2.2875 2.2885 2.2895 2.2905 2.2915 9.9 2.2925 2.2935 2.2946 2.2956 2.2966 2.2976 2.2986 2. 2996 2.3006 2.3016 47 LOGARITHMS TO BASE 10 N 0 1 2 8 4 6 6 7 8 9 1 2 3 4 6 6 7 8 9 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 4 812 17 2125 29 33 37 11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 3 610 13 16 19 23 26 29 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 5 7 9 12 14 16 19 21 19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 4 7 9 11 13 16 18 20 20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19 21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 16 17 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 24 3802 3820 3838 3856 3874 3892 3909 3927 3946 3962 2 4 6 7 9 11 12 14 16 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 4 5 7 9 10 12 14 16 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 11 13 15 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 12 14 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13 31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 5 7 8 lO 11 12 32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 6 7 8 911 12 33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 5 7 8 9 11 12 34 5315 5328 5340 5353 5366 5378 6391 5403 5416 5428 1 2 4 5 6 8 910 11 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 6 6 7 910 11 36 5563 5575 5587 5599 5611 6623 5635 5647 5658 6670 1 2 4 6 6 7 810 11 37 5682 5694 6705 6717 5729 6740 6752 5763 6775 *6786 1 2 4 5 6 7 8 911 38 5798 5809 5821 6832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 39 5911 59^ 5933 5944 5955 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 910 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 910 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 6 6 7 8 9 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 1 2 3 4 6 6 7 7 8 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 6 6 7 7 8 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 6 6 7 7 8 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 6 6 7 8 50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 6 6 7 8 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 6 6 7 8 52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 3 3 4 6 6 7 7 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7 N 0 1 2 3 4 5 6 7 8 9 1 2 2 4 5 6 7 8 9 The proportional parts are stated in full for every tenth at the right-hand side. The logarithm of any number of four significant figures can be read directly by add- 48 {continued)— WGARYTm/L^ TO BASE 10 N 0 1 2 3 4 6 6 7 8 9 1 2 3 4 5 6 7 8 9 65 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 1 2 2 3 4 5 5 6 7 66 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 1 2 2 3 4 5 6 6 7 57 7669 7566 7574 7582 7589 7597 7604 7612 7619 7627 1 1 2 3 4 5 5 6 7 58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 1 1 2 3 4 4 5 6 7 59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 5 6 7 60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 1 1 2 3 4 4 5 6 6 61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 1 1 2 3 3 4 5 6 6 02 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 1 1 2 3 3 4 5 5 6 63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6 64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 1 1 2 3 3 4 5 6 6 65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6 66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 3 4 6 6 6 67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 4 5 6 6 68 8325 8331 8538 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 3 4 4 6 6 69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 1 1 2 3 3 4 4 5 6 70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 3 3 4 4 5 6 71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 3 3 4 4 5 6 72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 3 3 4 4 5 6 73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 1 1 2 2 3 4 4 5 5 74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 1 1 2 2 3 4 4 5 6 75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5 76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 4 4 5 77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 1 1 2 2 3 3 4 4 6 78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 1 1 2 2 3 3 4 4 5 79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5 80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 3 3 4 4 5 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 3 3 4 4 5 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 3 3 4 4 5 83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 3 3 4 4 5 84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 1 1 2 2 3 3 4 4 6 85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5 86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5 87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 1 1 2 2 3 3 4 4 5 88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 0 1 1 2 2 3 3 4 4 89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 0 1 1 2 2 3 3 4 4 90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 0 1 1 2 2 3 3 4 4 91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 0 1 1 2 2 3 3 4 4 92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 0 1 1 2 2 3 3 4 4 93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 0 1 1 2 2 3 3 4 4 94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 0 1 1 2 2 3 3 4 4 95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 0 1 1 2 2 3 3 4 4 96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 0 1 1 2 2 3 3 4 4 97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 0 1 1 2 2 3 3 4 4 98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 0 1 1 2 2 3 3 3 4 99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 0 1 1 2 2 3 3 3 4 TS 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 ing the proportional part corresponding to the fourth figure to the tabular number corresponding to the first three figures. There may be an error of 1 in the last place. THE ELECTROMAGNETIC SPECTRUM WAVELENGTH ( meters ) FREQUENCY ( hertz ) i'6' 3X10 3X10 22 3X10 18 3X10 14 3X10 10 3X10 3X10 ENERGY (eV) 12 Type of Radiation Wavelength Range* (meters) Frequency Range (hertz) Energy Range (eV) Electric Power 00 - 3 XlO^ 0 - 10^ 0 4.1X10"^^ Radio Waves 3 XI 0^ - 3 XIO^ 10“^ - 10^^ 4.1X10“^^ - 4.1X10"® Infrared 3 XlO"^ - 7.6X10”’^ 10^^ - 4 XlO^^ 4.1X10"^ - 1.6 Visible y.exio""^ - 3.8X10"’' 4 XlO^^ - 7.9X10^^ 1.6 3.3 UltravioTet 3.8X10"'^ - 3 XlO"® 7.9X10^^ - 10^’ 3.3 410 X Rays 1.2x10"'^ - 4.1X10"^’ 2.5X10^^ - 7.3X10^^ 10 3 X10^° Gamma Rays 1.5X10"^'^ - 1.2X10"^^ 2 XlO^® - 2.5X10®^ 8 XlO^ lO’ Cosmic Rays 1.2X10"^ — 2.5X10^^ - 10 — 50 ^Ranges are approximate; no exact end points exist Atomic Mass Table (unified mass scale) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) electron 0.000 549 <1 13 B 13.017 780 4 84.455 proton 1.007 277 <1 C 13.003 354 1 97.109 neu tron 1.008 665 <1 N 13.005 738 1 94. 106 1 H 1.007 825 <1 14 C 14.003 242 <1 105.286 N 14.003 074 <1 104.659 2 H 2.014 102 <1 2.225 0 14.008 597 <1 98.733 3 H 3.016 050 <1 8.482 15 C 15.010 600 1 106.504 He 3.016 030 <1 7.718 N 15.000 108 1 115.494 0 15.003 070 1 111.952 4 H 4.030 300 1830 3.280 He 4.002 603 <1 28.296 16 C 16.014 700 17 110.756 N 16.006 103 4 117.981 5 H 5.031 620 1610 10.120 0 15.994 915 <1 127.620 He 5.012 297 20 27.338 F 16.011 706 13 111.197 Li 5.012 538 40 26.331 17 N 17.008 450 16 123.867 6 He 6.018 893 4 29.266 0 16.999 133 1 131.763 Li 6.015 124 1 31.993 F 17.002 096 1 128.220 Be 6.019 717 13 26.932 18 0 17.999 160 <1 139.809 7 Li 7.016 004 1 39.245 F 18.000 937 1 137.371 Be 7.016 929 1 37.601 Ne 18.005 711 5 132.142 8 He 8.037 520 2150 28.060 19 0 19.003 578 3 143.765 Li 8.022 487 2 41.278 F 18.998 405 1 147.801 Be 8.005 308 1 56.498 Ne 19.001 881 2 143.781 B 8.024 609 2 37.736 20 0 20.004 079 9 151.370 9 Li 9.026 802 22 45.330 F 19.999 987 5 154.399 Be 9.012 186 1 58.163 Ne 19.992 441 1 160.646 B 9.013 332 1 56.312 Na 20.008 880 320 144.550 10 Be 10.013 534 2 64.978 21 F 20.999 951 8 162.504 B 10.012 939 1 64.750 Ne 20.993 849 2 167.406 C 10.016 810 14 60.361 Na 20.997 655 9 163.078 11 Be 11.021 666 16 65.475 22 Ne 21.991 385 1 177.772 B 11.009 305 <1 76.206 Na 21.994 437 3 174.147 C 11.011 432 1 73.443 Mg 21.999 850 90 168.320 12 B 12.014 354 1 79.575 23 Ne 22.994 473 4 182.967 C 12.000 000 0 92.163 Na 22.989 771 2 186. 5b5 N 12.018 641 8 74.017 Mg 22.994 125 3 181.72b *Errors are standard errors (one standard deviation) in the last digits of the reported atomic mab.c Binding energy errors are not given, but are generally proportional to the atomic mass errors. tBinding energies are for the entire atom and include the binding energies of the electrons. Source; Mattauch, J.H.E., Thiele, W., Wapstra, A.H., "1964 Atomic Mass Table," Nuclear Phy Vol. b, No. 1 (1965), pp. 1-31. A El. Atomic Mass (u) Mass Error* Bind ing Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 24 Ne 23.993 613 10 191.839 36 S 35.967 090 9 308.707 Na 23.990 962 4 193.526 Cl 35.968 309 4 306.790 Mg 23.985 542 2 198.258 Ar 35.967 545 2 306.719 A1 24.000 100 100 183.450 K 35.982 040 1070 292.440 25 Na 24.989 955 9 202.535 37 S 36.971 010 80 313.130 Mg 24.985 839 2 205.587 Cl 36.965 899 1 317.106 A1 24.990 412 7 200.545 Ar 36.966 772 1 315.510 K 36.973 365 48 308.587 26 Na 25.991 740 320 208.940 Mg 25.982 593 2 216.682 38 S 37.971 230 160 321.000 A1 25.986 891 2 211.896 Cl 37.968 005 9 323.216 Si 25.992 343 14 206.036 Ar 37.962 728 3 327.349 K 37.969 097 10 320.634 27 Mg 26.984 345 4 223.122 Ca 37.976 720 1070 312.750 A1 26.981 539 2 224.953 Si 26.986 703 3 219.361 39 Cl 38.968 008 20 331.284 Ar 38.964 317 6 333.940 28 Mg 27.983 875 6 231.631 K 38.963 710 3 333.723 A1 27.981 904 4 232.684 Ca 38.970 691 25 326.437 Si 27.976 929 3 236.536 P 27.991 780 300 221.920 40 Cl 39.970 400 500 337.100 Ar 39.962 384 1 343.812 29 A1 28.980 442 7 242.118 K 39.964 000 1 341.524 Si 28.976 496 4 245.011 Ca 39.962 589 4 342.056 P 28.981 808 6 239.280 Sc 39.977 5 70 210 327.320 30 A1 29.981 590 270 249.120 41 Ar 40.964 500 5 349.912 Si 29.973 762 4 255.628 K 40.961 832 4 351.615 P 29.978 317 8 250.603 Ca 40.962 275 8 350.420 S 29.984 873 29 243.714 Sc 40.969 247 10 343.143 31 Si 30.975 349 6 262.222 42 Ar 41.963 048 43 359.337 P 30.973 765 2 262.916 K 41.962 406 11 359.152 S 30.979 611 12 256.688 Ca 41.958 625 4 361.891 Sc 41.965 495 13 354.710 32 Si 31.974 020 50 271.530 Ti 41.974 903 16 345.164 P 31.973 910 2 270.852 S 31.972 074 1 271.880 43 K 42.960 730 12 368.784 Cl 31.986 240 410 257.800 Ca 42.958 780 4 369.819 Sc 42.961 165 9 366.815 33 P 32.971 728 4 280.955 Ti 42.968 500 160 359.200 S 32.971 462 3 280.421 Cl 32.977 440 13 274.070 44 K 43.962 040 210 375.640 Ca 43.955 491 4 380.954 34 P 33.973 340 210 287.530 Sc 43.959 406 6 376,525 S 33.967 864 3 291.843 Ti 43.959 572 13 375.587 Cl 33.973 750 6 285.578 Ar 33.980 620 1070 278.400 45 K 44.960 680 210 384.980 Ca 44.956 190 4 388.374 35 S 34.969 031 1 298.828 Sc 44.955 919 3 387.843 Cl 34.968 851 1 298.213 Ti 44.958 129 5 385.003 Ar 34.975 254 18 291.467 52 A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 46 K 45.962 060 1070 391.760 55 Cr 54.940 833 7 480.263 Ca 45.953 689 10 398.775 Mn 54.938 050 4 482.073 Sc 45.955 173 4 396.611 Fe 54.938 299 4 481.059 Ti 45.952 632 2 398.195 Co 54.942 013 11 476.817 V 45.960 214 10 390.350 56 Cr 55.940 640 160 488.520 47 K 46.961 090 320 400.740 Mn 55.938 910 5 489.343 Ca 46.954 538 6 406.056 Fe 55.934 936 4 492.262 Sc 46.952 413 3 407.253 Co 55.939 847 8 486.905 Ti 46.951 769 3 407.070 Ni 55.942 116 16 484.010 V 46.954 899 9 403.372 57 Mn 56.938 300 320 497.990 48 Ca 47.952 531 10 415.996 Fe 56.935 398 5 499.904 Sc 47.952 221 8 415.503 Co 56.936 296 5 498.285 Ti 47.947 950 2 418.698 Ni 56.939 769 17 494.267 V 47.952 259 4 413.903 Cr 47.953 760 210 411.720 58 Mn 57.940 260 1070 504.230 Fe 57.933 282 5 509.946 49 Ca 48.955 675 12 421.140 Co 57.935 761 6 506.855 Sc 48.950 026 6 425.619 Ni 57.935 342 5 506.462 Ti 48.947 870 2 426. 844 Cu 57.944 541 8 497.111 V 48. 948 523 5 425.454 Cr 48.951 271 12 422.112 59 Fe 58.934 878 5 516.531 Co 58.933 189 4 517.321 50 Sc 49.951 730 210 432.100 Ni 58.934 342 4 515.465 Ti 49.944 786 4 437.789 Cu 58.939 496 22 509.882 V 49.947 164 4 434.791 Cr 49.946 055 4 435.042 60 Fe 59.933 964 33 525.454 Mn 49.954 215 29 426.659 Co 59.933 813 5 524.812 Ni 59.930 787 5 526.848 51 Ti 50.946 603 7 444. 168 Cu 59.937 362 9 519.941 V 50.943 961 3 445. 846 Cr 50.944 768 3 444.312 61 Fe 60.936 520 1070 531.140 Mn 50.948 190 50 440.340 Co 60.932 440 43 534. 162 Ni 60.931 056 7 534.669 52 Ti 51.946 820 1070 452.040 Cu 60.933 457 7 531.651 V 51.944 780 5 453.155 Zn 60.939 250 210 525.470 Cr 51.940 513 3 456.347 Mn 51.945 568 6 450.856 62 Co 61.933 946 43 540.831 Fe 51.948 117 14 447.699 Ni 61.928 342 5 545.269 Cu 61.932 566 11 540.552 53 V 52.943 980 1070 461.970 Zn 61.934 380 14 538.079 Cr 52.940 653 3 464.288 Mn 52.941 295 7 462.907 63 Co 62.933 530 210 549.290 Fe 52.945 572 48 458.141 Ni 62.929 640 5 552.108 Cu 62.929 592 5 551.393 54 V 53.946 720 1070 467.490 Zn 62.933 206 6 547.24a Cr 53.938 882 4 474.009 Ga 62.939 110 1070 540.960 Mn 53.940 362 6 471.848 Fe 53.939 617 5 471.760 64 Ni 63.927 958 6 561. 769 Co 53.948 475 7 462.726 Cu 63.929 759 5 5 59. Uj9 Zn 63.929 145 5 559.09^ Ga 63.936 737 33 551. s } A El. Atomic Mass Mass Error* Binding Energyt A El. Atomic Mass Mass Error* Binding Energyt (u) (MeV) (u) (MeV) 65 Ni 64 930 072 8 567.872 75 Ge 74 922 883 20 652.152 Cu 64 927 786 6 569.219 As 74 921 596 4 652.568 Zn 64 929 234 6 567.087 Se 74 922 525 4 650.921 GS- 64 93? 733 17 563.045 Br 74 925 447 22 647.416 Ge 64 939 600 1070 555.860 Kr 74 930 920 1070 641.530 66 Ni 65 929 085 33 576.862 76 Ge 75 921 405 2 661.600 Nu 65 928. 871 9 576.279 As 75 922 397 12 659.894 Zn 65 926 052 6 578.123 Se 75 919 207 7 662.083 Ga 65 931 607 7 572.165 Br 75 924 180 60 656.670 Ge 65 934 800 160 568.410 Kr 75 925 470 1080 654. 690 67 Cu 66 .927 759 13 585.386 77 Ge 76 923 600 50 667. 630 Zn 66 927 145 10 585.175 As 76 920 646 11 669.597 Ga 66 928 216 11 583.395 Se 76 919 911 5 669.498 Ge 66 932 940 110 578.210 Br 76 921 376 6 667.351 Kr 76 924 480 90 663.680 68 Cu 67 929 770 60 591.580 Zn 67 924 857 6 595.378 78 As 77 921 900 210 676.500 Ga 67 927 992 7 591.676 Se 77 917 314 3 679.989 Ge 67 928 530 1070 590.390 Br 77 921 150 6 675.634 Kr 77 920 403 5 675.547 69 Zn 68 926 541 7 601.881 Ga 68 925 574 4 602.000 79 As 78 920 890 60 685.510 Ge 68 .927 963 5 598.992 Se 78 918 494 5 686.961 As 68 932 150 320 594.310 Br 78 918 329 3 686.333 Kr 78 920 068 6 683.930 70 Zn 69 .925 334 6 611.077 Ga 69 .926 035 6 609.642 80 As 79 .922 970 210 691.650 Ge 69 .924 252 2 610.520 Se 79 .916 527 3 696.865 As 69 .930 946 32 603.502 Br 79 ,918 536 4 694.212 Kr 79 .916 380 6 695.437 71 Zn 70 .927 510 50 617.120 Rb 79 .921 900 600 689.600 Ga 70 .924 706 5 618.951 Ge 70 .924 956 6 617.935 81 Se 80 .917 984 7 703.579 As 70 .927 113 9 615.144 Br 80 .916 292 5 704.373 Se 70 .931 840 320 609.960 Kr 80 .916 610 110 703.290 Rb 80 .919 020 110 700.270 72 Zn 71 .926 843 10 625.814 Ga 71 .926 372 7 625.471 82 Se 81 .916 707 7 712.840 Ge 71 .922 082 2 628.684 Br 81 .916 802 5 711.970 As 71 .926 763 11 623.542 Kr 81 .913 482 5 714.279 Se 71 .927 410 1070 622.160 Rb 81 .917 959 33 709.327 Sr 81 .918 390 1070 708.140 73 Ga 72 .925 126 43 634.702 Ge 72 .923 463 2 635.470 83 Br 82 .915 168 17 721.562 As 72 .923 861 32 634.316 Kr 82 .914 131 5 721.746 Se 72 .926 814 34 630.783 Rb 82 .914 730 1070 720.400 Br 72 .931 860 1070 625.300 Sr 82 .917 200 1520 717.320 74 Ga 73 .927 190 50 640.850 84 Br 83 .916 550 50 728.350 Ge 73 .921 181 2 645.667 Kr 83 .911 503 4 732.265 As 73 .923 933 4 642.321 Rb 83 .914 381 5 728.803 Se 73 .922 476 5 642.895 Sr 83 .913 430 4 728.906 Br 73 .929 780 1070 635.310 Y 83 .920 190 110 721.820 Kr 73 .933 100 1520 631.430 A El. Atomic Mass (u) Mass Error* Bind ing Energyt (MeV) A El. Atomic Mass (u) Mass Error* Bind ing Energyt (MeV) 85 Br 84.915 530 110 737.370 93 Sr 92.914 710 110 800.360 Kr 84.912 523 7 739.387 Y 92.909 552 22 804.378 Rb 84.911 800 5 739.278 Zr 92.906 450 5 806.486 Sr 84.912 989 33 737.388 Nb 92.906 382 5 805.767 Y 84.916 489 34 733.346 Mo 92.906 830 14 804.566 Tc 92.910 251 20 800.598 86 Br 85.918 200 500 742.900 Kr 85.910 616 4 749.235 94 Sr 93.915 380 240 807.800 Rb 85.911 193 7 747.915 Y 93.911 680 210 810.470 Sr 85.909 285 5 748.910 Zr 93.906 313 4 814.684 Y 85.914 946 18 742.854 Nb 93.907 303 15 812.980 Zr 85.916 230 1070 740.870 Mo 93.905 090 3 814.259 Tc 93.909 663 7 809.216 87 Kr 86.913 365 10 754.745 Rb 86.909 187 3 757.855 95 Y 94.912 540 1070 817.730 Sr 86.908 892 4 757.347 Zr 94.908 035 5 821.152 Y 86.910 740 210 754.850 Nb 94.906 832 3 821.490 Zr 86.914 490 220 750.560 Mo 94.905 839 3 821.633 Tc 94.907 620 23 819.191 88 Kr 87.914 270 240 761.970 Ru 94.909 801 40 816.377 Rb 87.911 270 100 763.990 Sr 87.905 641 6 768.447 96 Y 95.915 690 1070 822.870 Y 87.909 528 8 764.044 Zr 95.908 286 5 828.990 Zr 87.910 060 1070 762.760 Nb 95.908 056 27 828.422 Nb 87.917 790 1520 754.780 Mo 95.904 674 3 830.789 Tc 95.907 830 50 827.070 89 Kr 88.916 600 500 767.900 Ru 95.907 598 6 826.501 Rb 88.911 650 50 771.700 Sr 88.907 442 7 774.840 97 Zr 96.910 966 23 834.565 Y 88.905 872 5 775.521 Nb 96.908 096 8 836.455 Zr 88.908 914 6 771.905 Mo 96.906 022 3 837.606 Nb 88.913 080 100 767.240 Tc 96.906 340 1070 836.520 Ru 96.907 630 1520 834.540 90 Kr 89.919 720 110 773.040 Rh 96.911 380 1520 830.270 Rb 89.914 820 110 776.820 Sr 89.907 747 9 782.628 98 Zr 97.911 960 1520 841 .710 Y 89.907 163 8 782.390 Nb 97.910 350 1070 842.430 Zr 89.904 700 4 783.902 Mo 97.905 409 3 846.248 Nb 89.911 259 11 777.009 Tc 97.907 110 210 843.880 Mo 89.913 940 110 773.730 Ru 97.905 289 4 844.795 Rh 97.909 800 320 839.810 91 Rb 90.916 070 1070 783.730 Sr 90.910 161 16 788.451 99 Nb 98.911 050 1070 849.850 Y 90.907 295 12 790.338 Mo 98.907 720 10 852. 166 Zr 90.905 642 5 791.096 Tc 98.906 249 6 852.754 Nb 90.906 860 70 789.180 Ru 98.905 936 4 852.264 Mo 90.911 650 60 783.930 Rh 98.908 190 22 849. 181 Pd 98.912 270 220 844.800 92 Rb 91.919 140 1080 788.940 Sr 91.910 980 80 795.760 100 Nb 99.914 020 1070 85 ). r>o Y 91.908 926 22 796.890 Mo 99.907 475 4 860. .6b Zr 91.905 031 3 799.736 Tc 99.907 840 60 859. 3‘.0 Nb 91.907 211 10 796.922 Ru 99.904 218 5 861 1. Mo 91.906 810 3 796.514 Rh 99.908 126 22 8. 7. 1 / Tc 91.915 460 150 787.670 Pd 99.908 770 1070 856. 13() 55 A El. Atomic Mass (u) Mass Error* B ind ing Energyt (MeV) A El. Atomic Mass (u) Mass Error* Bind ing Energyt (MeV) 101 Mo 100.910 353 20 865.857 109 Ag 108.904 75 6 5 931.729 Tc 100.907 326 27 867.893 Cd 108.904 928 7 930.787 Ru 100.905 577 3 868.741 In 108.907 096 13 927.985 Rh 100.906 178 19 867.398 Pd 100.908 070 60 864.860 110 Rh 109.911 100 500 935.500 Pd 109.905 164 14 940.204 102 Mo 101.910 250 1520 874.020 Ag 109.906 095 7 938.553 Tc 101.909 180 1070 874.240 Cd 109.903 012 4 940.643 Ru 101.904 348 5 877.957 In 109.907 231 43 935.931 Rh 101.906 842 9 874.851 Pd 101.905 609 11 875.217 111 Pd 110.907 670 50 945.940 Ag 101.911 300 1070 869.130 Ag 110.905 316 11 947.351 Cd 110.904 188 4 947.618 103 Tc 102.908 830 110 882.640 In 110.905 360 210 945.750 Ru 102.906 306 21 884.204 Sn 110.908 060 220 942.440 Rh 102.905 511 5 884.162 Pd 102.906 107 22 882.825 112 Pd 111.907 386 33 954.276 Ag 102.908 890 110 879.450 Ag 111.907 064 25 953.794 Cd 111.902 763 3 957.018 104 Tc 103.911 710 110 888.020 In 111.905 544 10 953.645 Ru 103.905 430 5 893.092 Sn 111.904 835 10 953.523 Rh 103.906 659 7 891.164 Pd 103.904 Oil 11 892.848 113 Ag 112.906 556 43 962.339 Ag 103.908 596 16 887.796 Cd 112.904 409 4 963.556 Cd 103.909 880 1070 885.810 In 112.904 089 9 963.071 Sn 112.905 187 18 961.266 105 Tc 104.911 330 220 896.450 Sb 112.909 986 47 956.914 Ru 104.907 679 17 899.068 Rh 104.905 671 13 900.156 114 Ag 113.908 300 430 968.790 Pd 104.905 064 12 899.939 Cd 113.903 360 3 972.604 Ag 104.906 460 1070 897.860 In 113.904 905 9 970.383 Cd 104.909 470 1520 894.270 Sn 113.902 773 9 971.587 Sb 113.909 510 210 964.520 106 Ru 105.907 322 12 907.472 Rh 105.907 279 12 906.729 115 Ag 114.908 930 180 976.270 Pd 105.903 479 6 909.487 Cd 114.905 431 10 978.747 Ag 105.906 661 9 905.740 In 114.903 871 8 979.417 Cd 105.906 463 4 905.143 Sn 114.903 346 7 979.124 In 105.913 440 320 897.860 Sb 114.906 599 23 975.311 107 Ru 106.910 130 320 912.920 116 Ag 115.911 310 1070 982.120 Rh 106.906 753 43 915.292 Cd 115.904 762 3 987.442 Pd 106.905 132 5 916.019 In 115.905 317 26 986. 142 Ag 106.905 094 5 915.272 Sn 115.901 745 5 988.687 Cd 106.906 615 6 913.072 Sb 115.906 630 50 983.350 In 106.910 360 160 908.800 Te 115.908 300 120 981.010 108 Ru 107.910 100 700 921.000 117 Cd 116.907 239 15 993.205 Rh 107.908 700 600 921.500 In 116.904 534 10 994.943 Pd 107.903 891 8 925.246 Sn 116.902 958 3 995.628 Ag 107.905 949 8 922.547 Sb 116.904 912 32 993.026 Cd 107.904 187 4 923.406 Te 116.908 670 60 988.740 In 107.909 720 90 917.470 118 Cd 117.906 970 1160 1 001.520 109 Rh 108.908 640 1070 929.680 In 117.906 110 430 1 001.540 Pd 108.905 954 5 931.396 Sn 117.901 606 4 1 004.959 56 A El. Atomic Mass Mass Error* Binding Energyt A El. Atomic Mass Mass Error* Binding Energyt (u) (MeV) (u) (MeV) 118 Sb 117 .905 574 8 1 000, 481 127 Sn 126 .910 260 1070 1 069 550 Te 117 .905 900 1070 999. 400 Sb 126 .906 927 33 1 071 863 Te 126 .905 209 9 1 072 681 119 Cd 118 .909 740 350 1 007. 020 I 126 .904 470 4 1 072 587 In 118 .905 990 130 1 009. 730 Xe 126 .905 220 380 1 071 100 Sn 118 .903 313 3 1 Oil. 440 Cs 126 .907 480 380 1 068 220 Sb 118 .903 935 22 1 010. 079 Ba 126 .911 340 1140 1 063 840 Te 118 .906 398 22 1 007. 002 128 Sn 127 .910 470 230 1 077 420 120 In 119 .908 000 1070 1 015. 930 Sb 127 ,909 070 160 1 077 940 Sn 119 .902 198 4 1 020. 550 Te 127 .904 476 6 1 081 435 Sb 119 .905 081 8 1 017. 082 I 127 .905 838 9 1 079 384 Te 119 .904 023 14 1 017. 285 Xe 127 .903 540 6 1 080 742 I 119 .909 820 1070 1 Oil. 100 Cs 127 ,907 759 33 1 076 029 Ba 127 .908 510 1070 1 074 550 121 In 120 .908 090 1070 1 023. 910 Sn 120 .904 227 6 1 026. 732 129 Sb 128 .909 260 1070 1 085 830 Sb 120 .903 816 3 1 026. 332 Te 128 .906 575 9 1 087 551 Te 120 .905 199 48 1 024, 262 I 128 .904 987 7 1 088 249 I 120 .907 730 70 1 021, 120 Xe 128 .904 784 5 1 087 655 Xe 120 .911 800 130 1 016. 550 Cs 128 .905 960 1070 1 085 770 Ba 128 .908 590 1070 1 082 540 122 In 121 .910 600 900 1 029. 600 La 128 .912 890 1520 1 077 760 Sn 121 .903 441 4 1 035. 536 Sb 121 .905 183 7 1 033. 130 130 Sb 129 .912 040 1070 1 091 320 Te 121 .903 066 6 1 034. 320 Te 129 .906 238 6 1 095 937 I 121 .907 511 43 1 029. 397 I 129 .906 676 33 1 094 747 Xe 129 .903 509 6 1 096 914 123 In 122 .910 570 1070 1 037. 750 Cs 129 .906 720 22 1 093 141 Sn 122 ,905 738 11 1 041. 467 Ba 129 .906 245 23 1 092 800 Sb 122 .904 213 3 1 042. 106 La 129 .912 260 1070 1 086 420 Te 122 .904 277 6 1 041. 263 I 122 .905 730 1070 1 039. 130 131 Te 130 .908 575 22 1 101 832 Xe 122 .908 730 1080 1 035. 550 I 130 .906 127 4 1 103 329 Xe 130 .905 085 4 1 103 517 124 In 123 .913 200 500 1 043. 400 Cs 130 .905 466 8 1 102 380 Sn 123 .905 272 5 1 049. 973 Ba 130 .906 716 18 1 100 433 Sb 123 .905 973 6 1 048. 539 La 130 .909 890 60 1 096 690 Te 123 .902 842 6 1 050. 671 Ce 130 .915 500 360 1 090 690 I 123 .906 246 33 1 046. 719 Xe 123 .906 120 150 1 046. 050 132 Te 131 .908 523 18 1 109 951 I 131 .907 981 7 1 109 67^ 125 Sn 124 .907 746 13 1 055. 740 Xe 131 .904 161 5 1 112 .50 Sb 124 .905 232 9 1 057. 299 Cs 131 .906 393 27 1 109 588 Te 124 .904 418 6 1 057. 275 Ba 131 .905 120 300 1 109 • -0 I 124 .904 578 6 1 056. 343 La 131 .910 300 320 1 1 0» ■4t. Xe 124 .906 620 1070 1 053. 660 Ce 131 .911 590 1120 1 102 Ul Cs 124 .909 910 1070 1 049. 810 133 I 132 .907 750 70 1 1 1 -■ -01. 126 Sn 125 .907 640 1090 1 063. 910 Xe 132 .905 815 39 J 1 Sb 125 .907 320 160 1 063. 420 Cs 132 .905 355 38 1 1 18 Te 125 .903 322 5 1 066. 367 Ba 132 .905 8 79 39 1 ! 1 - f, I 125 .905 631 7 1 063. 434 La 132 .908 240 220 i ! ! ' i Xe 125 .904 288 9 1 063. 903 Ce 132 .911 250 1 IOC 1 ! 1 ' Cs 125 ,909 440 430 1 058. 320 373-062 0 - 70 -5 A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 134 I 133.909 850 60 1 124.070 142 Ba 141.916 350 120 1 180.250 Xe 133.905 397 5 1 127.441 La 141.913 980 60 1 181.670 Cs 133.906 823 41 1 125.331 Ce 141.909 140 50 1 185.393 Ba 133.904 612 41 1 126.607 Pr 141.909 978 17 1 183.833 La 133.908 660 70 1 122.050 Nd 141.907 663 16 1 185.207 Ce 133.908 810 90 1 121.130 Pm 141.912 820 320 1 179.620 135 I 134.910 020 1080 1 131.980 143 La 142.915 870 90 1 187.980 Xe 134.907 020 110 1 134.000 Ce 142.912 327 19 1 190.499 Cs 134.905 770 110 1 134.380 Pr 142.910 781 16 1 191.157 Ba 134.905 550 110 1 133.810 Nd 142.909 779 15 1 191.307 La 134.906 890 1080 1 131.780 Pm 142.910 990 330 1 189.400 Ce 134.909 140 1520 1 128.890 Sm 142.914 550 90 1 185.300 136 I 135.914 740 110 1 135.670 144 La 143.919 600 1070 1 192.580 Xe 135.907 221 6 1 141.885 Ce 143.913 591 19 1 197.393 Cs 135.907 340 90 1 140.990 Pr 143.913 248 16 1 196.930 Ba 135.904 300 80 1 143.040 Nd 143.910 039 15 1 199.137 La 135.907 380 110 1 139.390 Pm 143.912 510 1070 1 196.050 Ce 135.907 100 500 1 138.880 Sm 143.911 989 15 1 195.755 137 Xe 136.911 100 ; 110 1 146.340 145 Ce 144.917 270 1070 1 202.040 Cs 136.906 770 80 1 149.600 Pr 144.914 476 19 1 203.858 Ba 136.905 500 80 1 149.990 Nd 144.912 538 15 1 204.881 La 136.906 040 1080 1 148.710 Pm 144.912 691 18 1 203.955 Ce 136.907 330 1520 1 146.730 Sm 144.913 394 18 1 202.519 Pr 136.910 360 1520 1 143.120 Eu 144.916 390 60 1 198.950 138 Xe 137.913 810 1100 1 151.890 146 Ce 145.918 670 240 1 208.810 Cs 137.910 800 1080 1 153.910 Pr 145.917 590 220 1 209.020 Ba 137.905 000 60 1 158.530 Nd 145.913 086 15 1 212.442 La 137.906 910 60 1 155.970 Pm 145.914 632 28 1 210.219 Ce 137.905 830 60 1 156.200 Sm 145.912 992 23 1 210.964 Pr 137.910 460 120 1 151.100 Eu 145.917 138 37 1 206.320 Gd 145.918 320 1070 1 204.440 139 Xe 138.917 840 390 1 156.210 Cs 138.912 900 330 1 160.030 147 Pr 146.918 800 1070 1 215.970 Ba 138.908 600 60 1 163.250 Nd 146.916 074 19 1 217.729 La 138.906 140 50 1 164.760 Pm 146.915 108 15 1 217.847 Ce 138.906 430 50 1 163.710 Sm 146.914 867 15 1 217.290 Pr 138.908 580 120 1 160.920 Eu 146.916 800 330 1 214.700 Nd 138.911 580 1080 1 157.340 Gd 146.919 170 1120 1 211.720 140 Cs 139.917 110 1070 1 164. 170 148 Pr 147.921 910 1070 1 221.140 Ba 139.910 565 23 1 169.491 Nd 147.916 869 15 1 225.061 La 139.909 438 20 1 169.758 Pm 147.917 421 26 1 223.764 Ce 139.905 392 19 1 172.745 Sm 147.914 791 15 1 225.432 Pr 139.909 007 27 1 168.595 Eu 147.918 110 60 1 221.560 Nd 139.909 330 1070 1 167.510 Gd 147.918 101 19 1 220.783 Tb 147.924 130 320 1 214.380 141 Ba 140.914 050 110 1 174.320 La 140.910 828 37 1 176.535 149 Nd 148.920 122 18 1 230.102 Ce 140.908 219 19 1 178.182 Pm 148.918 330 15 1 230.989 Pr 140.907 596 18 1 177.981 Sm 148.917 180 14 1 231.278 Nd 140.909 528 21 1 175.398 Eu 148.918 000 1070 1 229.740 Pm 140.913 410 220 1 171.000 1 Gd 148.919 300 160 1 227.730 ' Tb 148.923 350 60 1 223.180 58 A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 150 Nd 149.920 915 15 1 237.435 158 Eu 157.927 940 220 1 293.120 Pm 149.920 960 70 1 236.610 Gd 157.924 178 19 1 295.837 Sm 149.917 276 14 1 239.260 Tb 157.925 464 29 1 293.857 Eu 149.919 689 24 1 236.229 Dy 157.924 449 30 1 294.020 Gd 149.918 605 24 1 236.457 Ho 157.928 790 31 1 289.193 Tb 149.923 748 38 1 230.884 Dy 149.925 590 1070 1 228.390 159 Eu 158.928 840 220 1 300.350 Gd 158.926 368 27 1 301.868 151 Nd 150.923 770 110 1 242.840 Tb 158.925 351 26 1 302.033 Pm 150,921 198 22 1 244.460 Dy 158.925 759 34 1 300.871 Sm 150.919 919 21 1 244.869 Ho 158.927 690 1070 1 298.290 Eu 150.919 838 21 1 244.162 Gd 150.920 270 1070 1 242.980 160 Eu 159.931 000 500 1 306.400 Tb 150.923 150 330 1 239.510 Gd 159.927 115 20 1 309.244 Dy 150.926 250 1120 1 235.850 Tb 159.927 146 25 1 308.433 Dy 159.925 202 21 1 309.461 152 Pm 151.923 510 1070 1 250.370 Ho 159.928 740 60 1 305.380 Sm 151.919 756 15 1 253.093 Eu 151.921 749 15 1 250.453 161 Gd 160.929 720 80 1 314.890 Gd 151.919 794 16 1 251.492 Tb 160.927 572 21 1 316.107 Tb 151.924 280 160 1 246.530 Dy 160.926 945 20 1 315.909 Dy 151.924 729 28 1 245.330 Ho 160.927 800 1070 1 314.330 Ho 151.931 560 330 1 238.180 Er 160.929 950 1080 1 311.540 Tm 160.933 730 1080 1 307.240 153 Pm 152.924 030 110 1 257.960 Sm 152.922 102 17 1 258.978 162 Gd 161.930 880 1520 1 321.880 Eu 152.921 242 18 1 258.997 Tb 161.929 810 1070 1 322.100 Gd 152.921 503 18 1 257.971 Dy 161.926 803 19 1 324.113 Tb 152.923 490 1070 1 255.340 Ho 161.929 122 38 1 321.170 Dy 152.925 740 160 1 252.460 Er 161.928 740 90 1 320.740 Ho 152.930 270 60 1 247.460 Tm 161.933 990 140 1 315.070 154 Sm 153.922 282 15 1 266.882 163 Tb 162.930 5 60 60 1 329.470 Eu 153.923 053 20 1 265.382 Dy 162.928 755 19 1 330.366 Gd 153.920 929 20 1 266.577 Ho 162.928 766 22 1 329.574 Tb 153.924 580 1070 1 262.400 Er 162.930 065 23 1 327.581 Dy 153.924 350 60 1 261.820 Tm 162.932 502 40 1 324.529 Ho 153.930 260 1080 1 255.540 Er 153.932 760 1070 1 252.420 164 Tb 163.933 280 1070 1 335.010 Dy 163.929 200 19 1 338.023 155 Sm 154.924 701 18 1 272.701 Ho 163.930 390 41 1 336. 132 Eu 154.922 930 19 1 273.568 Er 163.929 287 43 1 336.377 Gd 154.922 664 18 1 273.033 Tm 163.933 541 48 1 331. 632 Tb 154.923 630 1070 1 271.350 Dy 154.925 880 1070 1 268.470 165 Dy 164.931 816 20 1 343.658 Ho 164.930 421 21 1 344.175 156 Sm 155.925 569 30 1 279.963 Er 164.930 819 22 1 343.021 Eu 155.924 802 25 1 279.896 Tm 164.932 540 1070 1 340. 5^*0 Gd 155.922 175 19 1 281.560 Yb 164.935 440 1520 1 337. 160 Tb 155.924 750 1070 1 278.380 Dy 155.923 930 180 1 278.360 166 Dy 165.932 807 30 1 350.80b Ho 165.932 289 30 1 350. 0- 157 Eu 156.925 390 60 1 287.420 Er 165.930 307 29 1 351. ' Gd 156.924 025 19 1 287.908 Tm 165.933 510 60 1 34 .8i‘ Tb 156.924 090 22 1 287.065 Yb 165.933 850 110 1 0 Dy 156.925 270 1070 1 285.180 SQ A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 167 Ho 166, .933 130 110 1 357, .790 Er 166, .932 060 29 1 358, .008 Tm 166, .933 030 1070 1 356, .330 Yb 166, .935 130 1070 1 353, .580 Lu 166, .938 390 1080 1 349, .760 168 Ho 167, ,935 930 110 1 363, .260 Er 167, .932 383 32 1 365, .779 Tm 167, ,934 230 50 1 363, .279 Yb 167, ,934 160 160 1 362, .560 Lu 167, .939 090 1090 1 357, . 180 169 Ho 168, ,936 860 110 1 370, .460 Er 168, ,934 610 34 1 371, ,776 Tm 168. .934 245 34 1 371, ,334 Yb 168. ,935 530 1070 1 369, ,350 Lu 168, ,937 960 1080 1 366, ,310 170 Ho 169. ,940 070 130 1 375, ,540 Er 169. ,935 560 70 1 378, ,960 Tm 169. ,936 060 60 1 377. .720 Yb 169. ,935 020 60 1 377, .900 Lu 169. ,938 830 70 1 373, ,570 171 Er 170. ,938 130 70 1 384, , 640 Tm 170. ,936 530 70 1 385. .350 Yb 170. ,936 430 70 1 384. ,660 Lu 170. ,938 140 1080 1 382. ,280 172 Er 171. ,939 330 80 1 391. ,590 Tm 171. ,938 380 80 1 391. , 700 Yb 171. ,936 360 70 1 392. ,800 Lu 171. ,939 260 1080 1 389. ,320 173 Tm 172. ,939 480 80 1 398. , 740 Yb 172. ,938 060 70 1 399. ,280 Lu 172. ,938 800 80 1 397. ,810 174 Tm 173. ,941 970 120 1 404. ,500 Yb 173. ,938 740 60 1 406. ,720 Lu 173. ,940 350 70 1 404. ,440 Hf 173. ,940 360 70 1 403. ,640 175 Tm 174. ,943 830 1080 1 410. ,840 Yb 174. ,941 140 60 1 412. ,550 Lu 174. ,940 640 60 1 412. ,240 Hf 174. ,941 610 1080 1 410. ,560 176 Tm 175. ,947 190 130 1 415. ,770 Yb 175. ,942 680 70 1 419. , 190 Lu 175. ,942 660 60 1 418. ,430 Hf 175. ,941 570 60 1 418. ,660 177 Yb 176. ,945 410 90 1 424. ,720 Lu 176. ,943 930 80 1 425. ,320 Hf 176. .943 400 80 1 425. 030 Ta 176. ,944 650 80 1 423. 080 178 Yb 177, .947 370 1080 1 430, .970 Lu 177, .946 300 90 1 431, . 180 Hf 177, .943 880 80 1 432, .650 Ta 177, .945 930 130 1 429, .960 179 Lu 178, .947 470 100 1 438, .160 Hf 178, .946 030 90 1 438, . 720 Ta 178, .946 160 90 1 437, .820 180 Lu 179, .950 370 150 1 443, .540 Hf 179, .946 820 100 1 446, .050 Ta 179, .947 544 48 1 444, .602 W 179, .947 000 50 1 444, .320 181 Hf 180, .949 105 42 1 452, .001 Ta 180, .948 007 42 1 452, .242 W 180, .948 211 47 1 451, .269 182 Hf 181, .950 700 220 1 458, .580 Ta 181, ,950 167 42 1 458, .301 W 181, .948 301 41 1 459, .257 Re 181, .951 372 47 1 455, ,614 183 Hf 182, .953 830 220 1 463, .740 Ta 182, ,951 470 43 1 465, , 159 W 182, ,950 324 41 1 465, ,444 Re 182, .951 260 1070 1 463, .790 184 Ta 183. .953 980 50 1 470, ,900 W 183, ,951 025 43 1 472, ,863 Re 183, ,952 780 1080 1 470. ,450 Os 183, ,952 750 70 1 469, ,690 185 Ta 184, ,955 560 70 1 477. ,490 W 184, ,953 519 43 1 478. ,611 Re 184. ,953 059 43 1 478. ,257 Os 184. ,954 113 43 1 476. ,493 186 Ta 185. ,958 410 330 1 482. ,910 W 185, ,954 440 45 1 485. ,824 Re 185. ,955 020 70 1 484. ,500 Os 185, ,953 870 70 1 484. ,790 Ir 185. ,957 990 80 1 480. ,170 187 W 186. ,957 244 45 1 491. 284 Re 186. ,955 833 44 1 491. 815 Os 186, ,955 832 44 1 491. 034 Ir 186. ,957 5 60 1070 1 488. 640 188 W 187. 958 816 48 1 497. 891 Re 187. ,958 353 47 1 497. 540 Os 187, 956 081 47 1 498. 873 Ir 187. 959 122 49 1 495. 259 Pt 187. ,959 670 70 1 493. 970 A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 60 A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 189 Re 188.959 370 90 1 504.660 198 Ir 197.972 620 320 1 563.400 Os 188.958 300 90 1 504.880 Pt 197.967 895 23 1 567.019 Ir 188.958 910 1080 1 503.530 Au 197.968 231 7 1 565.923 Pt 188.960 610 1520 1 501.160 Hg 197.966 756 7 1 566.515 T1 197.970 470 90 1 562.270 190 Re 189.961 960 440 1 510.330 Pb 197.972 410 1080 1 559.680 Os 189.958 630 80 1 512.640 Bi 197.980 370 1520 1 551.490 Ir 189.960 830 180 1 509.810 Pt 189.959 950 70 1 509.840 199 Pt 198.970 580 29 1 572.589 Au 189.964 710 1080 1 504.630 Au 198.968 773 13 1 573.490 Hg 198.968 279 7 1 573.168 191 Os 190.960 970 60 1 518.530 T1 198.969 460 320 1 571.290 Ir 190.960 640 60 r 518.060 Pb 198.972 860 1120 1 567.330 Pt 190.961 450 1080 1 516.520 Bi 198.978 440 1090 1 561.350 Au 190.963 550 1520 1 513.790 200 Pt 199.971 430 1080 1 579.870 192 Os 191.961 450 60 1 526. 160 Au 199.970 700 100 1 579.770 Ir 191.962 700 60 1 524.210 Hg 199.968 327 6 1 581.194 Pt 191.961 150 60 1 524.880 T1 199.970 962 8 1 577.958 Au 191.964 620 80 1 520.860 Pb 199.971 970 1070 1 576.240 Hg 191.966 160 1080 1 518.640 Bi 199.978 940 1520 1 568.960 Po 199.982 820 1090 1 564.570 193 Os 192.964 227 35 1 531.643 Ir 192.963 012 35 1 531.993 201 Pt 200.974 770 120 1 584.830 Pt 192.963 060 31 1 531.165 Au 200.971 920 110 1 586.700 Au 192.964 240 1070 1 529.280 Hg 200.970 308 7 1 587.421 Hg 192.966 750 1070 1 526.160 T1 200.970 750 60 1 586.230 Pb 200.972 860 1080 1 583.480 194 Os 193.965 229 25 1 538.781 Bi 200.977 370 1520 1 578.490 Ir 193.965 125 25 1 538.096 Po 200.983 020 1090 1 572.450 Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 202 Au 201.974 120 1070 1 592.720 Hg 193.965 790 1070 1 535.130 Hg 201.970 642 7 1 595.181 T1 193.971 570 1520 1 528.960 T1 201.971 950 25 1 593.180 Pb 201.972 003 40 1 592.348 195 Os 194.968 000 500 1 544.200 Bi 201.977 880 1070 1 586. 100 Ir 194.965 890 110 1 545.460 Po 201.981 130 1080 1 582.280 Pt 194.964 813 18 1 545.675 At 201.989 800 1520 1 573.420 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 203 Au 202.975 130 1070 1 599.850 T1 194.969 840 1090 1 538.650 Hg 202.972 880 8 1 601. 168 T1 202.972 353 8 1 600.876 196 Ir 195.968 250 1070 1 551.330 Pb 202.973 229 13 1 599.278 Pt 195.964 967 15 1 553.604 Bi 202.976 650 60 1 595.310 Au 195.966 555 14 1 551.342 Po 202.981 470 1120 1 590.040 Hg 195.965 820 14 1 551.244 At 202.987 710 1090 1 583. 4u0 T1 195.970 760 160 1 545.860 Pb 195.973 800 1090 1 542.250 204 Hg 203.973 495 7 1 608. » f T1 203.973 865 8 1 607. ^ 197 Ir 196.969 490 220 1 558.240 Pb 203.973 044 8 1 60^. Pt 196.967 347 13 1 559.458 Bi 203.977 810 1070 1 60.’. V Au 196.966 541 10 1 559.426 Po 203.980 460 1070 1 59Q.< ( Hg 196.967 360 44 1 557.881 At 203.988 060 1520 1 5^^!. I'i' T1 196.969 720 170 1 554.900 Rn 203.992 300 1090 1 58'.. - 1 Pb 196.974 090 1090 1 550.050 h\ A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 205 Hg 204.976 210 110 1 614.210 212 Pb 211.991 892 9 1 654.537 T1 204.974 442 8 1 615.073 Bi 211.991 276 8 1 654.328 Pb 204.974 480 9 1 614.256 Po 211.988 865 6 1 655.792 Bi 204.977 382 13 1 610.769 At 211.990 723 23 1 653.278 Po 204.981 200 1080 1 606.430 Rn 211.990 707 13 1 652.511 At 204.986 440 1520 1 600.770 Fr 211.996 230 1080 1 646.580 Rn 204,992 560 1530 1 594.290 Ra 211.999 950 1070 1 642.330 206 Hg 205.977 513 23 1 621.067 213 Pb 212.996 580 1070 1 658.240 T1 205.976 104 8 1 621.597 Bi 212.994 377 14 1 659.511 Pb 205.974 468 7 1 622.338 Po 212.992 849 10 1 660.152 Bi 205.978 389 28 1 617.904 At 212.993 070 210 1 659.170 Po 205.980 324 41 1 615.318 Rn 212.993 935 24 1 657.576 At 205.986 790 1070 1 608.510 Fr 212.996 184 17 1 654.698 Rn 205.990 580 1080 1 604.200 Ra 213.000 420 1080 1 649.970 Fr 205.999 840 1520 1 594.790 Ac 213.007 050 1520 1 643.010 207 T1 206.977 450 11 1 628.414 214 Pb 213.999 844 12 1 663.272 Pb 206.975 903 7 1 629.073 Bi 213.998 726 15 1 663.532 Bi 206.978 438 8 1 625,929 Po 213.995 204 6 1 666.029 Po 206.981 558 11 1 622.240 At 213.996 332 12 1 664. 196 At 206.985 5 60 60 1 617.730 Rn 213.995 380 1070 1 664.300 Rn 206.990 760 1120 1 612.100 Fr 213.998 980 40 1 660.160 Fr 206.997 730 1090 1 604.830 Ra 213.999 990 50 1 658.440 Ac 214.007 100 1080 1 651.040 208 T1 207.982 013 9 1 632.235 Pb 207.976 650 7 1 636.448 215 Bi 215.001 850 100 1 668. 690 Bi 207.979 731 9 1 632.796 Po 214.999 449 11 1 670.147 Po 207.981 243 12 1 630.605 At 214.998 656 14 1 670.103 At 207.986 610 1080 1 624.830 Rn 214.998 690 110 1 669.290 Rn 207.989 790 1070 1 621.080 Fr 215.000 400 30 1 666.910 Fr 207.997 950 1520 1 612.700 Ra 215.002 765 26 1 663.930 209 T1 208.985 296 37 1 637.249 216 Bi 216.006 310 1070 1 672.610 Pb 208.981 082 11 1 640.391 Po 216.001 908 9 1 675.928 Bi 208.980 394 8 1 640.250 At 216.002 416 11 1 674.672 Po 208.982 426 13 1 637.575 Rn 216.000 272 12 1 675.887 At 208.986 167 13 1 633.307 Fr 216.003 100 1070 1 672.470 Rn 208.990 420 1080 1 628.570 Ra 216.003 490 30 1 671.330 Fr 208.996 320 1520 1 622.280 217 Po 217.006 340 1070 1 679.870 210 T1 209.990 054 29 1 640.888 At 217.004 708 14 1 680.609 Pb 209.984 187 7 1 645.571 Rn 217.003 920 11 1 680.560 Bi 209.984 121 7 1 644.849 Fr 217.004 750 300 1 679.000 Po 209.982 876 7 1 645.227 Ra 217.006 390 40 1 676.700 At 209.987 036 28 1 640.569 Rn 209.989 540 42 1 637.454 218 Po 218.009 009 12 1 685.456 Fr 209.996 570 1070 1 630,120 At 218.008 710 15 1 684.953 Rn 218.005 606 12 1 687.062 211 Pb 210.988 742 22 1 649.399 Fr 218.007 521 16 1 684.496 Bi 210.987 300 11 1 649.960 Ra 218.007 170 1520 1 684.040 Po 210.986 657 8 1 649.777 At 210.987 462 8 1 648.244 219 At 219.011 320 90 1 690.600 Rn 210.990 566 11 1 644.570 Rn 219.009 508 11 1 691.499 Fr 210,995 330 60 1 639,350 Fr 219.009 250 26 1 690.956 Ra 211.000 950 1550 1 633.330 Ra 219.010 050 150 1 689.430 62 El, Atomic Mass (u) Mass Error* Binding Energyt (MeV) El. Atomic Binding Error* (u) (MeV) 220 At 220, .015 140 1070 1 695. . 100 Rn 220, .011 387 9 1 697, .819 Fr 220, .012 318 13 1 696, . 170 Ra 220, .011 026 16 1 696, .591 221 Rn 221, .015 390 1520 1 702, .170 Fr 221, ,014 244 15 1 702, ,447 Ra 221, .013 913 12 1 701, ,973 Ac 221, ,015 680 370 1 699, ,550 222 Rn 222, ,017 610 12 1 708, , 166 Fr 222, ,017 550 30 1 707. ,440 Ra 222. ,015 375 16 1 708, .683 Ac 222, ,017 779 20 1 705, ,661 223 Fr 223. ,019 760 11 1 713. ,452 Ra 223. .018 527 11 1 713. ,818 Ac 223. ,019 133 26 1 712. ,470 Th 223. ,020 920 190 1 710. ,030 224 Fr 224, ,023 320 1070 1 718, , 210 Ra 224. ,020 203 9 1 720. ,328 Ac 224, ,021 701 15 1 718. , 150 Th 224, 021 470 20 1 717. ,583 225 Ra 225. 023 630 13 1 725 208 Ac 225. 023 214 15 1 724. ,813 Th 225. 023 945 14 1 723. ,349 Pa 225. 026 230 1140 1 720. ,430 226 Ra 226. 025 438 12 1 731. ,594 Ac 226, 026 101 21 1 730. ,195 Th 226. 024 900 20 1 730. ,531 Pa 226. 027 882 22 1 726. 971 227 Ra 227. 029 180 24 1 736. 181 Ac 227, 027 774 11 1 736. ,708 Th 227. 027 727 11 1 735. 969 Pa 227. 028 801 27 1 734. 190 U 227. 031 200 1090 1 731. 170 228 Ra 228, 031 096 13 1 742. 468 Ac 228. 031 037 13 1 741. 740 Th 228. 028 733 9 1 743. 103 Pa 228. 030 990 16 1 740. 219 U 228. 031 377 22 1 739. 076 229 Ra 229, 034 870 1520 1 747, 020 Ac 229. 032 940 1070 1 748. 040 Th 229. 031 781 12 1 748. 336 Pa 229. 032 081 16 1 747. 274 U 229. 033 496 14 1 745. 173 230 Ra 230. 037 130 1520 1 752. 990 Ac 230. 036 270 1070 1 753. 010 Th 230. 033 159 12 1 755. 124 230 Pa 230, .034 541 21 1 753, .054 U 230, .033 935 20 1 752, .836 Np 230, .037 750 1070 1 748, .500 231 Ac 231, .038 570 110 1 758, .930 Th 231, .036 318 11 1 760, . 252 Pa 231, .035 903 11 1 759, .857 U 231, .036 290 50 1 758, , 720 Np 231, .038 270 60 1 756, .080 232 Th 232, .038 079 12 1 766, ,683 Pa 232, .038 592 24 1 765 .423 U 232, .037 148 10 1 765. .986 Np 232, .039 950 1070 1 762. .600 Pu 232, ,041 170 60 1 760, ,670 233 Th 233, ,041 604 12 1 771, ,472 Pa 233. ,040 268 12 1 771, ,934 U 233. ,039 654 12 1 771, , 723 Np 233. ,040 830 1070 1 769, .850 Pu 233, ,042 987 26 1 767. .050 234 Th 234. ,043 636 13 1 777. ,651 Pa 234. ,043 354 13 1 777. , 131 U 234. ,040 976 12 1 778. ,564 Np 234. ,042 908 20 1 775. ,981 Pu 234, ,043 313 20 1 774. ,822 235 Pa 235. ,045 450 110 1 783. ,250 U 235. ,043 943 11 1 783. 871 NP 235. ,044 075 11 1 782. 965 Pu 235. ,045 290 60 1 781. 050 236 Pa 236. ,048 700 1070 1 788. 290 U 236. ,045 591 12 1 790. 407 NP 236. ,046 605 15 1 788. 680 Pu 236. ,046 049 11 1 788. 416 Am 236. ,049 310 1520 1 784. 590 237 Pa 237. .051 220 60 1 794. 020 U 237. ,048 750 12 1 795. 536 NP 237. ,048 195 12 1 795. 271 Pu 237. ,048 434 13 1 794. 266 Am 237. ,050 060 1520 1 791. Q"0 238 U 238. 050 819 12 1 801. o80 NP 238. ,050 970 14 1 800. 75’ Pu 238. ,049 582 12 1 801. 2< 8 Am 238. ,052 010 1070 1 798. 7 30 Cm 238. ,053 030 40 1 796. -.90 239 U 239. ,054 328 13 1 806. <*8^ Np 239. ,052 951 12 1 806. 98^ Pu 239. ,052 175 12 1 80b. 9. 'a Am 239. ,053 042 24 1 805. ^ ‘0 Cm 239. ,054 900 1070 1 802, 8.‘- 6J A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) A El. Atomic Mass (u) Mass Error* Binding Energyt (MeV) 240 U 240.056 633 17 1 812.408 248 Es 248.075 500 1520 1 853.930 Np 240.056 080 70 1 812.140 Fm 248.077 190 30 1 851.570 Pu 240.053 836 12 1 813.448 Am 240.055 340 1070 1 811.270 249 Cm 249.075 985 17 1 863.895 Cm 240.055 518 11 1 810.316 Bk 249.075 005 12 1 864.026 Cf 249.074 870 12 1 863.369 241 Np 241.058 330 110 1 818 110 Es 249.076 380 30 1 861.180 Pu 241.056 873 12 1 818 691 Fm 249.078 960 1070 1 857.990 Am 241.056 850 12 1 817.929 Cm 241.057 679 13 1 816.375 250 Cm 250.078 420 1070 1 869.700 Bk 241.060 240 1070 1 813.200 Bk 250.078 337 16 1 868.993 Cf 250.076 432 14 1 869.985 242 Np 242.061 780 1070 1 822.980 Es 250.078 650 1070 1 867.130 Pu 242.058 769 12 1 824.996 Fm 250.079 550 40 1 865.520 Am 242.059 573 14 1 823.465 Md 250.084 430 1860 1 860.190 Cm 242.058 860 12 ] 823.347 Bk 242.062 080 1070 1 819.560 251 Bk 251.080 810 1520 1 874.760 Cf 242.063 670 40 1 817.300 Cf 251.079 591 18 1 875.114 Es 251.079 970 50 1 873.980 243 Pu 243.062 031 15 1 830.029 Fm 251.081 620 1320 1 871.660 Am 243.061 393 12 1 829.840 Md 251.084 870 1070 1 867.850 Cm 243.061 400 12 1 829.052 No 251.088 860 2150 1 863.350 Bk 243.063 022 25 1 826.760 Cf 243.065 330 1520 1 823.830 252 Bk 252.084 340 1070 1 879.540 Cf 252.081 657 17 1 881.261 244 Pu 244.064 235 17 1 836.047 Es 252.082 870 1070 1 879.350 Am 244.064 310 12 1 835.196 Fm 252.082 500 40 1 878.910 Cm 244.062 775 12 1 835.842 Md 252.086 530 1860 1 874.380 Bk 244.065 220 1070 1 832.780 No 252.088 970 40 1 871.320 Cf 244.065 988 11 1 831.284 253 Cf 253.085 140 60 1 886.090 245 Pu 245.067 800 1070 1 840.800 Es 253.084 850 14 1 885.576 Am 245.066 477 13 1 841.249 Fm 253.085 200 1070 1 884.470 Cm 245.065 511 12 1 841.366 Md 253.087 250 1070 1 881.780 Bk 245.066 393 13 1 839.762 No 253.090 580 1520 1 877.890 Cf 245.068 071 13 1 837.416 Es 245.071 330 1520 1 833.600 254 Cf 254.087 390 1070 1 892.060 Es 254.088 053 17 1 890.663 246 Pu 246.070 120 60 1 846.710 Fm 254.086 883 15 1 890.972 Am 246.069 720 60 1 846.300 Md 254.089 630 1520 1 887.630 Cm 246.067 250 13 1 847.817 No 254.090 990 40 1 885.580 Bk 246.068 820 1070 1 845.570 Cf 246.068 837 16 1 844.774 255 Es 255.090 290 1520 1 896.650 Es 246.072 970 1520 1 840.140 Fm 255.089 970 19 1 896. 168 Fm 246.075 260 50 1 837.230 Md 255.091 100 1070 1 894.330 No 255.093 270 1700 1 891.520 247 Am 247.072 100 1070 1 852.160 Cm 247.070 380 15 1 852.973 256 Es 256.093 710 1520 1 901.540 Bk 247.070 290 30 1 852.280 Fm 256.091 730 40 1 902.600 Cf 247.071 180 760 1 850.660 Md 256.093 790 1520 1 899.900 Es 247.073 620 40 1 847.600 No 256.094 280 40 1 898.650 Fm 247.076 740 1860 1 843.920 Lw 256.098 570 1070 1 893.880 248 Am 248.075 710 1070 1 856.860 257 Fm 257.095 110 60 1 907.520 Cm 248.072 379 16 1 859.182 Md 257.095 610 1070 1 906.270 Bk 248.073 020 1070 1 857.800 No 257.096 930 1520 1 904.260 Cf 248.072 220 30 1 857.770 Lw 257.099 510 1520 1 901.070 64 DENSITY OF ELEMENTS AND COMMON MATERIALS Ele- ment At. No. At. Wt. MIP* Density Ele- ment At. No. At. Wt. MIP* Density H 1 1.00797 18.0 0.0586 I 53 126.9044 4.93 He 2 4.0026 40.0 0.126 Xe 54 131.30 757.52 3.52 Li 3 6.939 39.032 0.534 Cs 55 132.905 1.873 Be 4 9.0122 56.0 1.8 Ba 56 137.34 3.5 B 5 10.811 2.34 La 57 138.91 6.155 C 6 12.01115 79.0 2.25 Ce 58 140.12 3.92 N 7 14.0067 92.0 0.808 Pr 59 140.907 6.5 0 8 15.9994 105.0 1.14 Nd 60 144.24 6.95 F 9 18.9984 1.11 Pm 61 147 Ne 10 20.183 130.016 1.2 Sm 62 150.35 7.8 Na 11 22.9898 0.971 Eu 63 151.96 5.24 Mg 12 24.312 156.4 1.74 Gd 64 157.25 A1 13 26.9815 163 2.699 Tb 65 158.924 Si 14 28.086 2.42 Dy 66 162.50 8.56 P 15 30.9738 1.82 Ho 67 164.930 S 16 32.064 2.07 Er 68 167.26 4.77 Cl 17 35.453 1.56 Tm 69 168.934 Ar 18 39.948 240.0 1.40 Yb 70 173.04 K 19 39.102 0.87 Lu 71 174.97 Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 Tl 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210 As 33 74.9216 5.73 At 85 210 Se 34 78.96 4.8 Rn 86 222 9.73 Br 35 79.909 3.12 Fr 87 223 Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103 Te 52 127.60 6.24 Ku 104 ■*Mean ionization potential. 63 Material Density (gm/cm^) Air 0.001293 Asbestos 2.0 - 2.8 Asphalt 1.1 - 1.5 Bone 1.7 - 2.0 Brick 1.4 - 2.5 Cement 2.7 - 3.0 Clay 1.8 - 2.6 Concrete, siliceous 2.25 - 2.40 Ebonite 1.15 Gelatin 1.27 Glass (common) 2.4 - 2.8 Glass (flint) 2.9 - 5.9 Granite 2.60 - 2.76 Graphite 2.30 - 2.72 Gypsum 2.31 - 2.33 Limestone 1.87 - 2.76 Linoleum 1.18 Marble 2.47 - 2.86 Paraffin 0.87 - 0.91 Plaster, sand Pressed wood: 1.54 Pulp Board 0.19 Sandstone 1.90 Slate 2.6 - 3.3 Tile 1.6 - 2.5 Water 1.000 Water (heavy) Wood : 1.105 Oak 0.60 - 0.90 White Pine 0.35 - 0.50 Yellow Pine 0.37 - 0.60 Source: "Medical X-Ray Protection up to Three Million Volts," National Bureau of Standards Handbook No. 76, 1961; "Handbook of Chemistry and Physics," Chemical Rubber Co., 48th ed., 1967- 1968; and Trout, E. Dale,, "Conventional Building Materials as Protective Barriers," Radiology, Vol. 76, No. 2 (Feb. 1961), pp. 237-244. 66 PERIODIC TABLE OF THE ELEMENTS s 3 la ! a>:- I - jdr. 2 • > } _k .u 'm OHi Zl! Ui I? t u < u! M •I "I jUs S =3 1 = i o n i Oi s w s II Ih Sf - "0 00 ° 2 b m o o §i'§~ d 5 +1 S Ai 2 00 o tl CO }?J o o> 9 54 o S w 9., S “ +1 E II I =■: 6 ^ II 2 ° -5 II z ” +1 -g f llrSi iSK » O OI I o o > o o : ^ o J 2 00 2 i - < o ; Z 0 ^ u ^ 1 ^ O R H- § < < *0 ~ '5 C ^ ^ c a oi E ^ ^ \o « I II I Jl Jl boo E « 8 ; 5 9 p ^ c >, ■5 -S E E E . (/> § 8 § 8 § 8 §§§i O o O O +I ° +1 II O (X, +1 in in +1 5 §§qS in o X CM ^ >" 2 : 8 § ; X ? 9 +1 •s ? o O '-• ) O o II fO Ol *>0 •■■i. 0 >J Oi 0 )i O] 0 i . 0)1 iSi I g • > Oi Q.I c. c N 3 i o, u O: Cl m UI Ui M UI ^ Dj u M "Oi u O). l«s :2 "Oi a- .= II! 5 \ ;—; =3 1 ; i 3 _, Ml Oi ^2 N! ® oi. / ®5 / s / Jii s' S' 3 'S 3|V| ^ 1 ° ^ii r>) 70 173.04 Yb Ytterbium 7.01 i or'; 21 i i Eiu i .^1 68 / 67.26 Er Erbium K. r r> 'i = El. !“■ 67 / 64.97 Ho Holmium k::: V li, = Ml lUi ‘ 0. = O' 66 162.50 Dy Dysprosium ^ Dll 00 “ 65 158.92 Tb Terbium ^:z ^ -^r'i ^car! 0^ Cm »< "O" sa ^ = 2 ii ^ E^i -u= * 63 152.0 |u 1 ^ 3.34 a- ” i= Cl?l = 3r'. ,Q.r-< 0* * Er', . 0.1 e 0 s-'- Zi- CO, ' Zt' ^ 1 '’Djl! es ,: 1 ^ E 0 ■ » ' i*-'” < Qii' a s. !T5 = Or^ i ®:.| ^ ^ s ^ ^ ^ B ~ P= s 57 138.91 La k-Sd 15 ^ s y. ^ ■ &9029Si ■ Percent Abundance - Mass ‘ nssion Product, Slow Neutron Fission of U235 Radiooctive Upper Isomer Stable Lower Isomer Two Isomeric States Both Radiooctive Mo 103 ?5.3h 66s 0' 0' r-S4,l26. L7I.C3.L46 4 Symbol, Moss Number Half Lives, ? Indicates Uncertointy ‘ Modes of Decoy and Energy In Mev In Order of Intensity; ”Indicotes Additional Low Intensity Transitions; .—Indicates Severol Energies Included Radiooctive Upper Isomer Rodlooctive Lower Isomer Displacements Caused by Nuclear Bombordment Reactions a, 3n a, 2n 3 He ,n a, n P, n p. r d, n 3 He, np a, np t, n 3 He ,p r. n n, 2n Original Nucleus d, p n. r t, np t. p r. np 7. P n, p n, a n. He* Relative Locations of the Products of Various Nuclear Processes He^ in a in 0~ out p in d in t in n out Original Nucleus n in t out d out p out 0'^ out € a out He^ out n = neutron p = proton d = deuteron t = triton (H*) a = alpha particit 0 - negative electron 0*- positron < ■ electran capture SYMBOLS TIME RADIATIONS AND DECAY ms milliseconds (lO'^s) microseconds (IO“®s) a alpha particle ( electron capture s seconds negative electron IT isomeric transition m minutes positron 0 radiation deloyed h hours r gamma ray SF spontaneous fission d days n neutron E disintegration energ' y years P proton e" conversion electron 16 15 s 32.064 Ob. 52 P 30.9738 Ob. 19 14 Si 28.086 C6.I6 Si 25 0.220s 8 + (0)4.25, 185347 .82-5.90 13 A1 26.9815 0*0 234mb AI23 '+A12 0.129s ' IT.44 rl.J727^ £14.4 " >44+ rm (•j'-Z EI4.0 12 Mg 24.305 Cq 63 mb Mg 21 O.I2!s 0* ((*3.44,4.03. 4.81, 6.45.--- EI3 Mg 22 3.99s 8+ r.074..58 E4.8 Mg 23^+ I2s 8+il,"" r.44 E4.06 11 No 22.9896 <70.534 ?Na 19 ,03s (p) No 20 . 40s 8*n.3.5.6 r i.633 [0)2.15,4.4 4. EI4.0 Na 21^ 22.8s 8+2.5I.- r 35 E3.5 Na 22'+ 2.602y 8+.546.".€ ri.2745 <^r4x b 6 15 8.7ms (p)6.40,6,97 0 14 71. Os ^+l.8),4.l r2-3i3 0 15 '^- 122s ^♦L74 n«r 0 16 99759 cy.l«m 5 17 *^' a037 0204 ffy .2f »b I7.999IS0 ol^ 26.8$ 8~3.25.46 r.20,<.36,-- E48^^^^ N 14.0067 L9 N 12 il.Oms r4.43, " (3a) EI7.4 9.99m ^♦|.I9 nor E2.22 N 14 99.63 <»i,Le2 «r .08 14.003074 N 15'^ 0.37 OyXJZmb <600011 N 16 2- 7.13s 6-4.3.I0.4." r6l30,7M9,-- (a) <.7 E 10.42 N 17'"’- 4.14s 0- y.87, 2.19 (n)l.2(,.40.i.8l E8.7 N 18 0.63s 8~9.4 rl.9e.l.65..82, 2.47 EI3.9 6 c 12.01115 3.4mb C9 I27ms fi* (p) 9.3,12.3 9.0311 C 10 I9.4s 8+l.07,*‘ r-72. 1.05 E3.6 C II ^ 20.4 m 8'^-97 € nor EI.96 C 12 9a89 cy3.4mb iZ.00000 C 13 1.1 1 oy O^mb I3i30335 5730y 8“.I56 nor " 61. 6h 8“4O..48..50 y.l85..090,D930j £.58 Cu68'"^ 31 s 8“3.50.2 26. yL08..8t,l.66. L24, £4.6 Ni 58.71 0-q4.57 Ni56 6.2d € X.I63..8(2.748. 472.. 276. £2 II Ni 57^- 36,lh €,8*.84. 71, rl-38.1 92,-127 L76,- £3.23 Ni 58 67.77 Ty 48 o'a 0 7fnb 57.93534 Ni 59^- 8 X lO^y e noy £1.073 Ni 60 26.16 0-^2 9 59.93079 Ni 61 1,25 o-y~2 5 cr, 0.05 60.93106 Ni 62 3.66 cr^l4 61.92834 Ni 63 92y 8"0659 £.0659 Ni64 1.16 3ia yl333. 1 173. ffy2,0 E2SI9 Co 61'+^+ l.65h 8“ 1.22 y.070 £1.29 Cc 1.6m 8“ 62 13.9m 8~2.88, .88 rH7,l47. l74 2.03, Co 63 52s 8" 3 6 y 088 2 £36 '**€0 64 28s i<28s |8“~35 r095 1 24 26 28 30 32 34 27 36 38 Co 58.9332 Ob 374 Co L4m 8*455 ri 41. 113.041 54®" 0194s 8*73 E8 252 26 Fe 55.847 Ob2.55 Fe 52 8.5 h 8*-80,(2.631.€ y.(7,.380 E2 37 »Fe 53-- 2.53m853m y.702. W\,26. ion. r2 4,l6,< 1329. 7.38, 2344 1^355 25 Mn 54.9380 13.3 Mn 2m 8* y.66- 145 50®" 0.288s 8*661 £7.63 Mn51"- 45.9m 8*2-2. •• y-76. 1.17 £32 '^Mn52®" 2l.4m|5.63d 8 * 2 63 €,8’.5 75 IT 38 yl.434, yl,43. 9^-74< tE4.7l 24 Cr 51.996 “i 3.1 Cr46 Us 8* Cr48 24h € y. 31 ,.116 El 4 Cr 49'^'- 4l.8m 8*1-54.139. y.09..06,.l5, £2.56 CrSO 4.345 CTyl6 49.94605 Cr5l 278d € y 3201, - £.752 23 V 50.942 0-^5 03 V 1 0ms y0 80 46 0426s 8*6 0 £705 V 47^- 31 2m 8*189. € yl79.l.6l,- £292 V 48 )6.l3d 8*70.€ y.983.1311, £4013 V 49^^ 331 d noy £.601 0.24 , - 4 » I0'*» Ms C'l.OM ff^-y-TB £**4IB 3lSH»7I6 22 Ti 47.90 Ob 6.1 Ti 41 89ms 8* (pi4.ei.3.i4, 3.0O.' £12.8 Ti 43 .49s 8*5.8 £6.8 Ti 44 47y €(8*1.47) yj07840, .06780,” Ti 45"* 3.078 h 8*104. € y .72-1.67 £2.059 Ti46 7.93 O'y 0,6 40^5263 Ti47*^ 7.28 ay 1.7 4635177 Ti 48 73.94 3.I6,-- £11.6 Co 38 0.7s 8* r3.5 £7 Co 39"" 0.88s 8*5.5 £650 Co 40 96.97 0.40 <7g 3 mb 39.96259 Ca4l"- 8 xio'y c £.4 3 Co 42 0.64 O-yO.7 41.95863 Co 43^^ 0.145 6. 42^5878 Ca44 ' 2.06 o-y 1.2 43.89549 Co 45'^'>- I62.7d 8-.25.- y.OI25 £.252 Co 46 a0033 ay 0.7 45.9537 Co 47^^- 4.53d 8“.68.L98.— r 1. 297,. 409- .808 £1.98 K 39.102 * K 39"" 93.08 22m 8‘4.9.--- yLI6, 2.1. .48-30 £5.2 K 45""“ 17 m 8~2 1.11.40 y.l75.l.7l. • £4.2 K46 M5s 8“6.3."- y 1.35,3.70,- E 7.72 19 0952s 8*5.0 noy £6.0 768m 8*27. y2-l7. £5 93 0.0118, L28i ipS a- 4.4 era 39 ri3i4 ensos 18 17 Ar 39.948 0.64 Ar 33"'+> 1 76ms 0* (p)3.27. E 11.4 Ar34 0.9s 0* {4.SJ y 67 ? £6.06 Ar 35''" 1.62s 8*4,94. • r 1-19. 1.73 £5.96 Ar36 0337 cry 6 CTa 5.5 mb 55.96734 Ar37"" 34.4d € £.614 Ar38 0.063 ff-y. 6 37.96273 Ar 39"- 269y 8". 565 noy Cy 500 £.565 Ar40 9aeo 1.42 m 9-^32, 75. rl.46.J3- 5.9 £‘''8 26 14 16 18 20 22 24 S«74 Q«7 •» «• Se75'^ (20 4d , 2»^ M 2«Q i>24 •■• C Se76 902 Vt(S0*45) 17 7» IT '62 J 77 7.58 »r42 7^91991 d Se78 23.52 TytSSt.O?) 77.91731 j ''Se,79 7 3,9mp65»i0 y IT,096.8“I5 6" noy Je.I54 a Se80 49.82 ^yl.08-»,53) 79.91653 A ^»Se 57m IT.I03 yi.(5? 81'"'- 16m 8-1.58. 7276.29C £29.^ 18-650 £158 A Se82 9.19 £ry(.04 + .006) 81.91671 J '^’^Se83'^^ 69s 23m 8-3.5, 9-93 '•5.^4 L5.3 2 yl01,2 a r 356. ,S5..35^^2^ Se84 3.2m 0-1 4 7 408 A Se 85 39s 0- J Se86 >l6s 0~ A Se87 5.8s 8* A As?3>- 76d 1 »4 As 74 t- aot 1 7 7 !•?»« I -‘Si ^75^ I64m5i 100 1T024 504 ! J As 76 2- I9u 5 ! 264 h IT&6_j 0-2 97. 2 41.1 76. 7 56.1 22.66. M-264 £^47 9^>'As77 j'- II6/4S 36 6h IT.2I 8-69. 162 £69 A As 78<2-» l.52h 8’4 l.l 4. - r6(4, 695.1 31. 08-27 £4.1 A As 79iv)- 90m 8“2.I4.I 2-1 8 y 0960,.36-.69 £2.2 A As 80 .7 I5s 8-6.0,53.3.0- 4.5 7.666, 78-235 £6.0 A As 8 1(3/-) 32s 0- 3.8 £3.8 A As82 I5s 0~ y.655, 817 A As83 I4s 0~ (n) A As84 5.8s 0- M A As 85 2 Is 0- (nj A As 86 (n) A As87 469 1 e2.8m IT #-l2Q.92. >39 " ir265.066 - 6iS .£•20 J Ge76 7.8 oy(io*05) 75 92141 J i>-)Ge77l7/7) 55s |n.30h r 2‘5. r*^-2"' IT 159 1.12- 2 S4 E295Je2 79 J Ge 78 I45h 8-.70 y. 278.. 294 £96 J Ge79 < Im 0- d 48 50 52 54 Ga7l 39 84 ^1 1 •4t) roM4ri Go 72 > 37m»i I4.lh n oo LliLJ66-5*« r C30. Go 73“- 4 6h '9. r 295. 525.742. 1 0555. 0^5) 055 j Go 74 79m #“26,4 3 y. 596.2 55. 38- 36 £55 J Go 75 1 -9m 8-3.3 y-58. 36 £33 A Go 76'3-i 32s 8“~6 r 56.1 12. £-7 A Ga77 I7s A Ga78. •'-4s A ZnTO Q62 •%«2S34 *'Zn7l ■ 397h 2.4m #• 45 #‘26i. » S#7. 2t. - te.«»0.r4)2. >2 I4S C2*5 C26< Zn72 465h p- 30. r 145.191. Oe- M2 noci C 46 J 46 Cu60fv 3 0m #-2#4 riOO^ M6, ir- 2 0) C 2 M 44 42 40 Co 55'^ I6h 0*i 5'. 104. .4 y 93 .'408.477. 0920-MI7 t3 46 Co 56^* 77 3d <.8*'46. y 6421236.732 -355 £4 57 Co 57'^ 27ld € 7-122. 014, .*36, - £.837 9lh FT 025 7rl4ic:^ ICUs IT 053 58^^ 7l4d i.6' 46, r8m. 6630.1673 (7ri7. 10’ £2 309 Co 59^^ 100 ,173, <7y2 0 F?8I9 Co 61 l.65h 8 - 1.22 y.070 £1.29 Co 62 1.6m 13.9m 8" 18-2 88. 7 1 .88 yl 17.147 1.74, 2,03." lE5h Co 63 52s 8" 3.6 7 .088 2 £36 -'Co 64 '■’= 28s <28s i8--^35 7 095 1 Fe54 5.62 ^72 3 53.93962 Fe55>'- 27y ( E 232 Fe 56 91.66 ^ 9.50 18 52,94065 Cr 54 2.365 Cy 0.36 53.93866 Cr55’'- Cr56 3.53m 5.9m 8-2.5.- 8*15 yl.52.2 24 y.083,.026 £2.59 £1.6 36 V 51 99.76 0^7 4 9 50.94396 V 52^^ 3.75m 8'2 5. ■ 7*434. Esg-' V 53 2.0m 8-25 7I.00 E34 V 54 55s 8-33 7.835. 99,2 21 £7 Ti 50 5.34 Vy <0.2 Ti 51'^- 5.76 m 8-2.14.1.5 7.,320.,93,.6I £2 46 Ti 1.7m 8- i.e y.>25. -0I7.' 52 49m 0- 7(1.43) £1,97 34 Sc 49"^ 57.5 m 8"20>.-- 71.78 E2.008 Sc 0.4s n.258 50 l.73m 8 " 3-6 t02.(.56, 32 E6.6 Sc 51 12s 8-^5..- yl.44.2.16 E6.52 32 VyU 47.952S Co 49"^ a70m 8-2.. 1. .••• y3.08.4.O7,-- £5.26 Co 50 Us 8- y.0T2.(.26) F 5.4 K 47 17.5s 8-4.1. 6. • 7 2-0.2-6 £6.65 30 28 75 49 In 114.82 4.194 In 106 5. 1 m 0*3.1. 4.9 yl65,l85.- £6.54 In 107 32m 0*2.3. € y-22, .28-25 £3.5 In 40m 0*3.5. 2 .7 - € y.63,B4 38 08 57m €.0*1.3 y.24,.l5. .10-105 £4.5 ^•*In 0.21s IT £8 n.43, 17-U* CTTSt 109"^ 4.2h €.0*80 y 20. 63, 23-17 48 Cd 112.40 Ob 2460 CdlOl l.2m 0* Cdl02 5.5m ^.118,481,104, Cdl03 7.3m 0* y 108,145,1 46, Cdl04 55m € (0*2.7) y.064,.067.-, (.556) e- £~ 1,2 Cd 105 57m €.0*1.69. • r .08, 35,( 68. 1.31, - E~28 cdloe • 122 oyi 105.90646 Cd 6. €.0*.3 y(093) 1.22 £1.417 107="^ 3h 0 033- Cd 0. ayu 107 loe 88 904)9 47 Ag 107.868 8.3h C.0+.78,- r024,.296.59C .270-1.31 £1.99 Pd 102 0.96 C.5 _t0i.905€ Pd 103^" I7d c y(.040)..053-50 £.56 Pd 104 10.97 I0a>9040 Pd 3^5 1T.103 y.M7, £49 I 105f^ 22.23 OU031 J Pd 106 2733 O^COI3+.28) I0&9034e^ 45 Rh 102.905 0-„l48 Rh95 4.8m yO.94,1.36 Rh '^'t.5m 0* y-83 IT? 96 ^J~9m 0* r.83..63 .69 Rh 97 33m 0*l.e,2.l,2.5 € r.00-2.5 E3.49 Rh '^Sm IT 98 8.7m 0*2.5. e y.66 £4.2 Rh 4.7h €.0*74. y .35.62 .89-141 99 I5.0d e.0*lO3 y.53.J5. .090..18- Rh 100 2lh €.0*2.62" y54,2.38,. 3-2.5 £3.64. a^lRJ. 4.47d ejTjM y.307, . 127-541 IOI"« y.l98,i27 .32." L56 Rh 2.ly y.475, 632,698 418-L79 102 207d e.0-l.l5 0M.3O.fll y.475jra E*l.15 •• "Rh 55m IT, 040 j 103''“ 100 ^137) tOZSOSB ^ 5^Rh 436m IT.077 y£».£S^ B*I2S,-- y366..T7 104'^ 42s 0"2.47 oOJO £^.47 "-Rh 38s IT.I29 Oy{5»l0 £.565 105''^ 35.5h 0-565.g y-321,308- «-ll»IO») 44 Ru 101.07 cr„2.6 Ru 93 ~ 52s 0* Ru94 52m «. 0* y.37,.89..5E Ru 95'^^’ l.65h €,a*Lai.3,.7..' r.336.1.10,.627, .290-2.33 £2 03 Ru 96 5.51 <^21 99i90760 Ru l.8ms ? y 23 QTliftl ^ 2.89d y.22..1l- .75 £1.2 Ru98 1.87 «^<8 97.90529 Ru 99*^ 12.72 99.90994 J Ru 100 12.62 9990422 Ru IOP» 17.07 r Tc 100'^ 15.9s 0~3.4.2.8,- y. 54,60." £34 Tc 10 I4.2m 0-1.32,1.07 y.307.. 13-94 £1.63 J 5.3s 0-4.4 r47-63. .86,1.0- EULj to2 4.3m 0-2 y.47.63. I.I.I.O- 2.2 J Tc 103 50s 0-2.2, 2.0 y.l35..35,.2l5 £2.4 j 46 48 50 52 54 56 58 60 43 Tc 42 Mo 95.94 crz.se Mo 88? 27m 0*2.5 y2.69 Mo 89? 7m 0 + 4.05,4.95 41 Nb 92.906 C5,U5 Nb 88 14m 6*32 r.(»..27,.40.67" 40 39 Zr 91.22 (Tqjez Zr8l rv/ lOm Zr82 rv lOm Zr83 ~7m Zr84 I6m Zr 15m 85 l.4h Zr 86 I6.5h €(0*12. y.24,.03k.6lll-Oe, U6,.) £~l Zr 87 l.6h 0*2.10." y.38) E350 Y 88.905 o-gLae Y 82 I2m 0* Y 83 7.5m Y 84 41 m 0*25,35." 7 0O. 98.LO4." £6 3 iz-ly 27h 0*1.5, '•,€ y.50, (24).- 85‘^ 50h 0*22. 2-1 .•• 7.23-2.8 ' €3-28 8+ Y 48m ITXXO y.zoe 86^- I4.6h f,0*(.2. .6-31 rl.0e,U6, J6-4.9 £327 38 Sr 87.62 Sr 80 l.7h € y 58 Sr 81 29m 0* 7 Sr 82 25d € (0*il51 (y 78.1.4) £~-4 Sr 83^'^ 32.4h €.0*l.23.-8Oi" y.762..582I0423) ,094-2.15 *' £2-2 Sr 84 056 oy(.58 + .3l) 8391543 70m [T.006, .23 y.237 €,y.is 85IOT 64.7d € y5l40,- EI.H 37 Rb 85.47 C6O.4 Rb77 Rb78 6m y.455..664.I.IIO, .103-2,013 Rb79'^-' 23m 0* y.688..ie3..l30- ,915 Rb 80'^ 34s ^*4.I.".€ y.6l6 ES ^b 32m 0*14 1T085 81 4.7h €.0*1.05. y 190.446 £2 26 5-Rb 64 h €.0*8C yT77 .554,615 .698-147 82 l.25m 0*31V' y.fTf. 1,41... ' £4 17 s'-'Rt 8ms y-0423 )83^- 83d rS2l..53a 553.009, ■.0320, 0090 El ^^Rb 20m rT.2(6 465 r-249 t.788 84'- 33.0d .0*OQ165 .880.1.01, 1.90 r.89 ■09E*2£8O 36 Kr 83.80 q,23.9 Kr 74 16m 0*3,1 £ 4.1 Kr 75 ~ 5m 0 * y,l4,.l6 £5 Kr76 I4.8h € y. 267., 316. .03-45 E~t Kr77^^ l.2h 0*l.05.L68-.€ y.l30..l46,(J08l," £3.0 Kr78 0.354 a^(.2l + 4.5) 7T92040 wK 50s IT.I27 '79®'- 34.9h f, 0*60,32 r-26l,.60a 397.044- t.33 Kr 80 2.27 Se 42m 0*i,e3.< y.076. .25..58. ■■ 73'^’ 7.1 h 0*1-29. 166, c y.360. .067 £2.74 Se74 ae7 76d (y 05330.015501 £.34 As 74'- 80sl I7.7d ^-^y 596, 609 0'l.35,72 -2.5 7635 £■*2.56 -E-L3S ^As 16.4m IT024, 304 7.28 75^ SJIOO 0 ^ 4,3 M.92I60 As 76'- l.9^s 1 26.4h 1T.O46|0~2 97. 2.41,1.76," 7.56.1.2266. ry.q? ,64-2.66 s/tiA 16/as IT.21 7 26 s77^- 3a8h 0"69." y.239,52l 250..087 £69'®'^ As 78t^-> l.52h 0-4.1.I.4." y.6l4,.695. 1.31. .08-2.7 £4.1 J As79'^'>- 9.0m 9*2.14,1.2-1,8 r.096D..36-.89 iif d As 80'* 15s 0-aA333D-4.5 y .666.-78-2. 35 £60 34 36 38 40 42 44 46 '•In 110'* 4'» 67m • , < .m. ^ ‘ ,1 >•» ' In 9m l» M TTT^ 2 820 f 247. -In 112'* 208m| I44m IT >5« 4 *4 • - k^‘5T r42^-«5 t «4 E*2M ^In I66h IT 392 113*^ 428 ^<2.4* SOTS) aao*o9 »'In 44ms r Ji *Sod rr 191 *72 J6 tl4‘" *.719$ 4*198. 7I30,«. 4*40 £*198 £*143 BB 4.501 IT.34 4~84 _-0 SilO^T 9-.5<7y 90»6S*47] •43038^ «’In 2.3s IT.I64.<* j^54,lrr 4*10(18 yl.29il.IO 16 1 I42s ^■3.3. ■ 130-2.11 '^■In 117^" 1,94 h 44m 4 - 177. 4".74 162 y.56..l6 IT.3I In 118 " 4.5m 5.1s 4 - 1. 3. 4-4.2.- 20 ." yl.23 yLZ3. 105.8- 7.0 £4.2 A v-iln 1 19M1 18m 2.2m 4“2,7. 4"i-6 1-8.- r-82.- r024, .90.' • IT,30.iE2.5 A '"'In 3.2s 4"S6.-- yl.l7 A 20 48s 4 - 28, 09-281 E~5.6.i In 121 3.1m ' 30s 4 - 3.7 [ 4 - y .94 j£^Z£A In 122 8s 4-~5 yl.14,1.0 £^67 J In 123 36s 6s 4-4 6 8- fyUO AE-^5J In 124 ~ 4s 4-i3 yl.l3..99.3L2l E-S.74 J In 125 18s {2 5s A A ‘'Cdl09'" r 1 nx> CdllO 12 99 •yti*in •04 40501 ‘Xdlll 4a6mJ 12.79 IT i5i f r2«ro ^24 koKM f ^ Cdll2 24.07 t 2 *2m 1“ Xr“*- lu (00^ 4«» ‘•Ag 1 10'" 124 6* 53 ht.5e. !■!» !f*>n^ 74s IT 065 J 111'^ 7480 rJ4.2s;;. »y3 2 Cl05 J Ag 112='- 3,l2h 4“40l,- y 617., 35-3.3 E4.0I J Ag l.2m 4‘ no IT y.14-70 IIS'" 5.3h 4~2-0.-- y-30,l2- 1.16 £2.00 Ag 114 5s 4"4.6.-- y.57 £4 6 J Ag 115 54s 2im 4 - 4 - 1. 1. 3. 2. noy. 7 - 3.0 y.22..l 1 -2.5 J£3 3 J Ag 116 2.5m 4"5.o,- y.52,.70.-- Ag 117 l.lm 4* A Agile 5s A Agll9 Short J 74 22i H-7»K)*y :C 03) ^ Pd 108' nri tntOM9*^ 'Pd 109=^ 469m|l5.46h IT i®9|4-<03. jrioon. Iciii) j Pd NO li.ei ^.02t,4) l09i90S2 J I'^^Pdl 1 1 5/tl 5.5h I 22m IT.I7 b-212.- 4~.57-uay.l6. .38. ri6,387]!63..2a- .2e-L9f^^l44 (065»r°^?J Pd 112 2lh 4“ 28 y.0(9 £.30 J Pd 113 1.5m 0- 4 Pd 114 2.4 m 4 - 4 Pd 115 39 s 4" 4 Pdll7 5s A Pdll8 3.1s A Rh 106" 2 len 30.0« IV*- ,l»*^ Rhl07^ 22.4m #-l2. M-151 r3<. >2* M H5i J Rh 108'* 17$ 4*~«5.3 5.4 1. r43. 62. ^ 4 Rh --50s IT M 109 K30, r 49. 31 Rh 110" 5$ 4-55,- y 374 i 68 70 72 Ru 105^ 4 44h r’7)v ^ iC lltT Ru 106 5660 4’0304.U.M.- 1 (r5i2.e2*50«) ?03»4 J Ru 107 4 2m 4*32,19-50 r 19. 57- 1 3 E5i 0 Ru 108 4 5m 4-13.12 r >7 Lii d Rul09 35s B' A 66 Tc 104 18- Dm ri4. r M. 53. ML145 4*<7 «* i Tc 105 7.8m 0~y*,i9 y .145. tS4. lOa. 32t.- J Tcloe 37s tO 26 J Tcl07 29s y.ll A Tcl08 <10s A 62 64 Tc 92 4.4m 4*41 yi54. 79. 33. •4. C6.I |43m hT390 j y 27 2.73h €.4*82. 6 yt35.i.5. "^Tc,94 52m 4.8 h 4*247j€,g*,et6 ^-.€]Y.9«,7a3 y47U L$50. "'Tc 95^ 61 0 |2Q0h ej9*49.75|€ y.20-i.0[yr77,.20- IT.039 |ei.66 Tc 52m IT.034 *78.120 4S..72- 1.50 96 43d € y.7a.8S .01.(13. 31-1.50 ii/-rp 900 IT .097 c97'^' ^6x10 y € Tc 98, 1.5x10% 4-~3 y.76,.66 £1.7 ''-Tc BXXTTh IT r .002, .142 9?r l2J3x)Cry 8* 292 5y 22 Or .292 A Tc 100'" 15.9s 0-3A.2.6.- y.54.60.- E3-4 Tc 10 r" I4.2m 4-1.32.1.07 y.307..O-.94 £1.63 A »>Tc 102 5.3s 4.3m 4-44 16-2 r .47 63, fr.4763. Tc 103 50s 4 - 2. 2.20 y.l35..35..2l5 E2.4 A Tc 104 laom 4"24. y 36. 53. 88.L63 .6-47 £5.9 A Tc 105 78m 4*34. 1 e y.l43. 159. oa 621." E3 4 a Tcl06 37 $ y - 7B A Tcl07 A Mo 90 5 7h «. 4*109 y( 257. IQUMZ7 -l.4«2 £248 ‘'■’Me 65s 1T65 4*2A. 2a«.o yl 53.(2 I5.49m ‘4*344 c 1 £446 Mo 92 15.84 ^<00««0) 91.90681 6,9h ^6il(3*y IT. 26 C 1.46 Ie.42 Mo 94 ao4 91.90509 Mo95»* 15.72 ^4.4 94.90584 A Mo 96 16.53 «V 85s90467 A Mo 97^ 9.46 9a 90602 A Mo 98 23.78 97.90541 A Mo 99- 66.6h 4-L23..44,-- y(.l40,-‘)..74. X34I-.93 EL37 A Mo 100 1 9.63 99.90747^ Mo 101"^'^ I4.6m 4" 2.23." yL02..5a2.08. 1)8-1.66 £282 A Mo 102 lUm 4--'i('^4) £-) A M 0 IO 3 53h? 66s irus. 1 Mo 104 1.3 m 4-22.48 y 070 (36.801^ A Mo 105 41$ 0- A MoKD6^ A MSI! 68m 4* *(.5881 507- '2r d89®^' I9h 4*29 , *1512- 39 ^ £39 "’Nb lOms IT257 «-«4i IT.122 90'^ I4.59h 4*L50.-, 620 IT 105 ry(21 i9r’ long € ELI Nb IOJ30 €. 4 * y.93. 0C»0 £2 03 92 ? >3^y I3.6y^ 1T.030 |j 100 C^tlO 8906800 ^"Nb 6k2&r« IT t 041, 4 - 12.0 y 87i:- £ ,9467 JOxlO y r.5,” r,8A.702 V.7 :204 ii/-’Nb95‘^ 87h 135,10 IT.235 4".I60.-- e- y.765 J?^925.i Nb 96 23.4h 4-748, 37.-- y.779..569.l.09. .I8-L50 £3.15 A 58s IT .75 1971 OT 73.6m 4 - 1.27 y.658. ,72-1.51 IEI93 A Nb 98 2. 8 s i 5lm 4-~4aw*2.3.L9 y.7a,l.0.[‘-^' ^1.4 T.78..72, J 08-1.9. .JE4.6 A Nb I4s 4 "098 y.l4 99 Z4m 4-3,2.- y.l0..26 E3k7 A Nb 100 ae* 1 2.9m 4-4 4* y.6-a^.53.3a ,n.~ |E~6, Nb 101 70s 0- £4.6 A 64 Zr 88 650 « 7 390 Zr 4.20m IT 588 £.4*9. 24 yl51 89 1 78.4 h €.4*40 y9O90; £2 83 OBOs IT23I9 .133 ^218 M 90 51.46 IXMTQi Zr9l^ M.23 0^04 9a90564 A Zr 92 17.11 oyai8 9L90905 J Zr 93^ 9.5 X IO®y 4-063,034 (y.030) c^<4 £.09 A Zr 94 17.40 ^05 99v9O05l A Zr 95^ 65.50 4-40,-36,69. 1160) y.756..T23,(.23, EI.12I ■'^Jl Zr96 2.60 oyO.2 95,»M2»^ Zr 97 I6.8h 4-l9l.".(l.27,") y.H-|.85(.743) £2.67 A Zr98 3ls 4 - E'>'l.5 A Zr 99 2.4s 4 - £4.5 A ZrlOO ~ Is A ZrlOl -^3.31 4' £-^61 A 62 ►My I3h IT.38 1 8*l54 ' 87^-' eoh 1.4*6 r 48, ( 39) Il8 HI Y asomt IT 39 5.4ms r4f }(06£d €.4*78 ' yl84. 90.- £3 621 15.7^ 100 •0.906074 [7+1 Y 3.l9h IT 48 y.20 4 *.62 rZ3A 902- 64 .Oh 0’ZZT. yl-75 <7y<6.5 £^27^ 9/+ Y 505fT IT.55I A 91 58.80 4~154.-- yl.2l A Y 92 2 - 3.53h 4*163,L32, 1.59-2.71 y.93,.47.1.4. .07-2.4 E3 jB^ Y 93"'-’ I0.2h 4**2.89. • y.27.94.,49-2.4 £^69 A Y 94 20.3m 4 - 5. 0 ." ; y.92..55.LI4,L67^ 3.5 1 £10 A Y 95 I I0.5m 4-4,3..76.LI7." y.9a2-l8.l.32, .43-4.07 £4.3 A Y96 i3m 4 - 3.5 y.7.l.0.-- £7 A Y97 l.lls 0- £5,7 A Y99 ~0.8s A Sr 86 987 «V(.64*?) 889080 2.83h IT 39 < •- |i) 87« 704 UOMi Sr 88 82.53 <^6mb 07.9O504 A Sr 89^" 50.80 4-146.-- y.9IO oyO.5 EL463 A Sr 90 28.9 y 4-546.(2,27) oy’b.9 £.546 A Sr 91 ^ 9.67h 4-L09.I.36. 2.67 yl55llU»-l.65 £2.67 A Sr 92 2.69h 4 - 55.13 yL37..44.23 EI.9 A Sr 93 7.5m 4-2-9.26.2.2 y.60. .80, .3-2.1 E48 A Sr 94 L29m 4 - 2 .I yl.42 £3.5 A Sr 95 26s 4* A Sr96 4.0s 4" A Sr97 0.4s A Rb85»^ 72.(5 ^.06 *.40) •891100 A Rb LOOmI IT.56 t T E 86^ 8£6d rLTa.71. I.08,-- 1.78 27.85^ 50* 10 "y 0’.zr ftOy ^12 £.274 Rb88^ I77m 4-52.13,2 yl.84.49SL2.68. 1.30-4.8 E5.2 A Rb 89 I5.2m 4"I.26,2.2I,4.49. ;yl.03.l.25..66, ” ' 2401-55-34 IE4.49 A Rb 4.28n 0- __. A 90 2.7m 4*66, tszz.- Rb 91 579 s 4*4.6 y.094. .35 E6 A Rb 92 4.48s 4 - (n) E8 A Rb 93 5.87s 0 - M A Rb 94 2.67s 4 - (nl A Rb 95 0.36s 4 - Im A Rb96 0.23s 4' A Rb97 .I4s A Kr 84 56.90 4y(.09-*.O42) •9l»II» a "-Kr.85^" 4.4h I0.74y 4-.83 4'67.- y.l50 y.5l4 iT.soa 2t 67 A Kr 86 1737 «y.06 •6.9I062 A Kr87 76m 6"38,L3.13 y.403,2.56..B5,- £3.09 A Kr 88 2.79h 4 - 52. 2. 7 .- y2.4,.l9l..85. .028-2.2 £2.6 A Kr 89 3.18m 4“49,4.6.34,-. y.22..59..0eS-4.7 £5 A Kr 90 32.3s 4-2.8.-- y.l2l5.640.LI2. 1.53a .11-3.6 £4,6 A Kr 91 8.6s 4 - 3. 6 .-. y5l..ll £5-7 A Kr 92 i.84s 0 - M A Kr 93 1.29s 0 - (f.) A Kr 94 Is 4 - A Kr 95 Short 4 - A 60 Br 83^ 2.40h 4-93 •• y.52 ly.032..009) (•-) £47 A Br 84 60m| 31.8m 8-L9;^-4,7... *,88. I>^ 27-3.9 ^^Je4.7 a BrSS"-’ iOm 4-~2.e y.8l,.92 £2.0 A Br 86 54s 4-3.5.74... yl.6, 1.4. 2. 6.-- £76 A Br 87 55. 6 s 4"2.6.-- yl.4.2.6.l.0-S0 (n).3 £6. A Br 88 16s 4" (n) y-79." A Br 89 4.5$ 4 - (n).5 A Br 90 1. 6 s 4 - A 58 Se82 919 ^(i>4-».006} 61.91671 A l69s ^-3.5. I.5.2.4 yLOUA •65. J5 85^ 23m 4’9345k 32 y356. .512.226 feisJi Se 84 3.2m 4-1.4 y.408 A Se 85 39s 4“ A Se86 >16s 4* A Se 87 5. 8 s 4 - A 56 As ei*^' 32s 4*34 f»y i As82 ]5s 4~ y.655,.0l7 A As83 I4s 4’ (n) A As84 5. 8 s 0 ~ (n) A As 85 2. 1 $ 4 - (n) A As86 (n) A As87 3 7.77, 1.03 Eu I43"^« 2.6m 8*4.0 yi.i. E5.0 Eu 144'" lOs 8+5.3, - 7.820.I£6,248 E6.38 5.96d € ,8+1.72,79 7.894.1.66,. Itl- 2.51 E272 Eul4€‘"~' 4.6d €,8+I.47,.802II 7,747.633,666. .703,.I46-2.I6 E3.87 Eu|47(5/f) 24.3 d €. 8 + 75,.62,.55 y.l97.l2l,.076* 1.45 a 2.90 62 Sm 150.35 o;:,5860 Sml40 I4m Sml4l 23m € (8+~2-6) Sm 142 72.5m €,8*’ 1.0(38, ••) (7 1.57) E2.I 63s IT75C nl43“ 883m €.8*247 yL056, 273-2.1? E3.49 Sfnl44 3.09 143.9120 Sm 145^'- 340d € 7.06I4..49,'- 0-7 -dO E63 Sml46 1.0 X IO®y a 2.50 60 61 Pm Pml39? ~6m Pm 5.8 m t.e* 7((03, 43,.78) 40 ? Pm 141 20.9m 8+~2.6.€ 1 71.22, -89, .195- 1 2.07 E3.6 Pm 142'" 36s 8+3.e,- •,€ 7I.57 E4.8 Pm 143^ 265d € 7.742 Ei.oe Pm 144^*' 363d ;€ 7-618,. 697,-477. 302-1.51 E237 Pm 145®'* I8y 7.072, .0670 a 2.24 E 14 Nd 144.24 Oq50 Ndl35 I2m e* 7 21. .44 Ndl36 55m Ndl37 38m Ndl38 5.2h Nd 5.5 h e.8*33. (1.09) y.AB3^9 .N-2 50 139 30m •8+ 741 8 Nd .6ms IT.43 7I.03J8' 1 140 3.37d € r(l60, 190 31.1 E*v3 Nc 62s IT .757 1 14P'" 244h €.8*’ .78 7U3.I.29, "5. 14|^ El 60 Nd 142 27.11 <7719. 141.9077 Nd !43'^ 12.17 <77324 05, .020 142.9098 J 23.85 2. 1 X 10 y aLB3 < 773.9 Pr 140.908 36.4ld 7-203,172 375. - E.54 Xe 128 1.92 07(.4+<8» (27.90394 I 126.9044 Oi,6.2 1115 l.3m 0* 1116 < .5m 8 + 7104 I 117 24m 8*- 7.16.. 33,. 72.- I 118 9m 1 14.2m |8+6I,€ y60,6iry55.605 I 119 20 m 8 + .€ 7 258,063-1,00 I 53m 8+3.9 1 760,61 120 l.35h e.8+3.5. 2.9 7,56, ,64. 152J54 £'v5.4 I 08ms IT 7.06- .19 121'5/t) 2,l2h €.8+1.2 72120^ .60,3207 236-184 E2 4 I 122 '+ 3.5m 8 + 3.I2.2.56.-.C 7.56,.€9-3.5 E4.I4 I 123^" I3.lh € 7.159,184- 784 E'^1.4 I 1242 - 4.l7d €,8+l.55,2.l5.- 7.60.I.7..72. .64-2.7 E3I7 I 125^ 59.7d € 7.035 I6h S .27I-17M !50d IT 082 7-212 €.71.1.- I7d 1 € 7-57.5t," El. 29 M7d 1T0885 7.1590 0.87 n2»io^ Iy440 E-06 2290428 58d iT.no 7 0350 6.99 <’71.6 24304^ 1 Nc 60 ite - Te ; 62 64 66 Incomplete here, complete below. 68 70 72 74 5 5 5 4 2 Te 127.60 <7b4.7 Tel07 2.2s 8 + 0 3 28 Tel08 5.3s 8+ € a 3.08 (p)3>».3.7.2.6 Tel092 4.2s ' (P) Telll? 19.3s' (p) Tell4 17m 8 + (40.2,7) y(89il30) Te O.IOs IT.28 115 6m 8+26,12, 21.- « 772.1.28, Te 116 2.5h €.8+(2.3.") 7 .094.- (1 29. 93,.97.2,22.-) El, 6 *“ ( Te 117'" 64 m €.8+175 7 720.172.109. 57-2.30 1350 Te 118 6,00d € (8 + 2-6) (yl,23,.lt.") ’^-Te 4.7d 1.024) 119"" I6h Tel20 a089 <7y(.34♦^0) ((9.9040 1 0 Sb 121.75 0-0 5 Sb 112 0.9m 8+.€ ri-27 Sb 113 6.7m 8 + 2.42,185 € 7.3-1.5,(079) Sb 114 3.4 m 8+4.0. 2 .7 7.69,1 30 E6.3 Sb 115^^ = 3l,9m ( €.8+151 ' 7.499.114-222 » £303 *"35 50.4m 1.8+ 116- 42696 10-106 116" 16 m f*a3i5. 7129, 93-222 E4.6 Sb 1 l?5't 280h t.0*37 r 16 £182 "Sb 087s IT? y 14-38 V4^ los'.il. 118" 3.5m e+26.€ 1I7I 23. 1 53-127 €3 70 SblI95'* 38.lh € 7.0240 E.58 Sn 118.69 Sn 108 9m y 20. 42 Sn l.5m 8+ 109 18-lm €,8*-vl6 y 34,1.12. 891661 SnIlO 4.0h € (8+2.25) 7.2B3,(.66) Sn III 35.1m «,8»i.5i yU5.0 76,1.91, .373-2.32 E2.52 Snll2 a96 <77(3* 8) MI.9048 20m JT.079 113"'’' Il5d € 7255. (.392) E1.02 Sn!l4 “ 0.66 1 113.9028 1 59ils1 035 oy45 *12, 501II490BB T**) 3us' ^ T 12 Snll6 14.30 >-’In 1 Wms 161 ^OOd T.I9I ■.72-56jl 14'+ 71.9s 9*198, 7I30,€. 9+40 •*198 i + 143 IT.34 |^5,io'*y 0*84 8“.5 5i 10, #r4r ■ns >li lo", oy^OOO 09 I40.fir2 j Sm 150 7.44 102 MS9I75 J SmlSP^ 93, 8*076.- ,0220 T_ >9,000 Sm 152 26.72 ^7208 ISI.9I99 A Sml53^ 46.eh 8" 70..63..80.- rJ03..0697, 083-636 E-801 A Sml54 22.71 1919223 A SmI55^ 22.3m 8-I.54.- r.l044..246.J4l .026-130 EI.65 J Sml56 9.4 h 8“-43..T2 ,.O07..2O,.O4- .29 E.72 J Sml57 0.5m 8" ,.97 A Pm 146 553, • r 4)4. 0 ft f f*f ••^rrMOO 1 )4 f'4» PmW7'* 2 6234, #- *2) r <2i0 t 22) J ^Pml48' 41 Sd S4<] »■ WT 0't*r. •U.4M ' 'Q4.'W , 64 22-96 Prl35 22 m 8*29.« ,22.09. 30 Prl36 I3.5m «. 8 * E9 07 Pr \^7 t^ 77 m 8*1.7 E2.8 e Pr 138'^ 2J0h, 1.5m <,8*I6V^*3.44 ,UH " -,79,69. 79J0- *£479 !E446 Pr 139^ 4.4 Ih €,8*l.09 ,1.347.1631,255. L376.I32-202 E2.II Pr 140'" 3.39 m 8*232.--.e ,1.60.190.31.- E3.34 Pr 141^^ 100 oy{3.9*8) MO. 9076 A Pr 142^- 14.6rm !9.2h IT j8'2.l6.892, 0037c.,L576.- ,^2^*74 E^163 ^ Pr 143'^" I3.58d 8-.931 rto, d-,91 £.931 A Pr 1440 - 72m 1 173m 8*2 99..8t,230- ,.6962186. 1489." E2.994 A Pr 145-^*' 5.98h 8*1-90 ,.072-1.39 EL80 A Pr 146^" 24.2m 8“2i4852^- ,.454.191736 99-2 35 E41 A Pr 147 I2m 8*2.i.i.49. • ,.078-1 3 £27 A PrW 8 2 Om 8*42 ,.30. - E45 A Prl49 2.3m 8*262 2 >4.. 6. M £*-; 3 4 Cel33 97m ^ l^h (t 2 ) 7^ •.■191 C*«29 Cel34 72h , 51 96. 57 E-'M Ce 135 17. 7h «4‘8i , 269,300.606, 0345-190 E-2 1 Cel36 0.193 0y(i4-6) 1 139.907 i "-Ce 137^ 34h 1 9.0h r^^^feoio. rt 68, 43-93' 82.76 * -M 6 'E-'i.a 1 Ce 92 ms 7 30. 791.04 138 0250 oy( 014+ 1. 0 )' i 329056 "^e,l39^ 56s I375d rr 755 € * |,.I 66 D i£.27 Cel40 7^5 1 88.48 1^.9054 1 A Ce 141"-! 32.53d 1 8~.435..58 y.145 <7,28 E.58I A 11.07 >5 * ID**? a Ml? <7v86 141.9091 J Ce 143^^- 33.0h 8"L09.139.-- y291057..664. .14-132 E1.44 A Cel44 284.4d 8“3!6,ie2.'* (2.99.- •) ,.034-.l34.L636 -219) 5xio*y e.ri-45 S~-309.,«l E*l.78 £-L02 La 13^ 99.91 <7,9.1 138.9061 J La 140^- 40.23h 8*1.35. 1.24JS!- y L60,487,816. .025-3 32 E3T7 ‘’■/2T J La 141 3.87 h 8-2.41- ,L37 £2.43 A La 142^- 92.4m fl-2Jl.l964U 71 .87.",,645Z4i. 215,90.86- La 143 14m 8*3.3 ,.61.20-2 85 E33 A La 144 4ls 1 8 * £''5.6 J 1 1 Bo 131 14 6 m ll.7d IT079 jC ,107 |,90. •24CL2I6.099- ■09 ri« Ba(32 Q097 191.909 Bal33^’ 389h. I0.7y rT276[< ,0123 1,366,061, 303J053 ,-ir Bal34 ^42 ^r(.i 6 *L 6 ) 1319046 ''Bal35^ 28.7h i 659 IT 26B ^ Ba 033s IT.I64 ,82. 1.05 136 7.81 oyl.OII* .4) 019043 " Ba 137* 2551ml 1132 IT 666 e- (V5-I 1)369055 J A Bal38 71.66 <7y.38 137.9050 A Bal39^- 83.2m 8*2.54,2.i7..9,- ,.1660.142. 1053-2.06 £2 34®t® a Bal40 12. 8 d 8*102. 48; ,137,0300. 014-438 EI.05 J Bal4l 18. 3m 8 - 2 .e.-- ,.19..)2-L6 E3.0 A Bal42 I0.7m 8 - 1. 0 .-* ,.26..89.L20. .06,-97-1.68 £2.2 A Bal43 I2s «■ Bal44 1 11.9s 1 8 ’ 4 Cs 130'^ .30m «. 8 *i 97 7 936. 996, 694, .1 i 2 - 2 i< # 442 E*442 E*299 Cs 131^^ 9.69d ( flO, E 36 Cs l32^-i 658d 4.8* 4. ,668.363-1989 8-7. ,46^.367 1.031 E*20e E'l-2 Cs 133^ 100 ff,{2.7 + 27 2) 192.9094 A «-Cs 134^^ 230hj 2.06y rrj27, t5~£se.Aea 7404T 7®'0jy95« ^43- f^l«E 20 W ®K:s 135!” 53mt3xlO®y n.84[8-.2i ^ io */9 -Jr 21 4 Cs 136'- 13d 8*34,66. 7<82.105..i64). 067-1.25 EaS4 A Cs 137^ 30.2y 8-.5l4.U76 (,.6616) (e-) ETi76 A Cs 138 32.2m 8-24.14.-- ,1.43.1-01.46. 222.J3-337 £4.83 A Cs 139 9.3m 8*42r2 7.~3 4 ,1.28. -63.- • £4.2 A Cs 140 63.8s 8*>44.-- ,.59.. 88-115 E57 A Cs 141 24 7s 8 " (fl> A Csl42 l.7s 1 (M 4 Csl43 1 1. 7 $ 1 8 - A CsJ44 ! I.IS 0- J 1 -- 4 ^Xe 6 d 1 ITI96 1 ,040 1 129*^ 26.44 ^20 iaBo«n A Xel30 4.08 ^ 4*<26) 12190191 '^Xel3l^ 11^ 21.16 rri64n J30909ra |83mS| ^773. 67.34J 60 ie 1 132 26.89 dyU3a*4 BI904I6 A '^e 133 226dj 5.27d IT.233 8-.346,-- e ,.OeiD.- cr,i90 AZ 428 A Xe 30s IT 23 , 85.-89 1 134 10.44 oy<3mt)« 25) 339054C Xe 135 15.7ml 9.l6h rrs3 8'9'.- ‘ 1, 2500. ; i58-£oec ael8‘62.l04. 8* '7 , 54 y 6214.74 r i3r'" 8.065d 8 " 606.25-ei y.364,.0800- ^2^,-7 E.9TO w J I 132^^ 2,284h 8-.B0-2 14 r67..77..52, 15-2 7 * EiS6J ! I 133^'^ 20 8 h 8-1-211.54.-- ,.51.87,1.3. - £ 1.8 A 1 134 52.3m ^r2.43,L3.i 4. 2 2. • 7 847.884. .14-1.8 £42 A I 135'^" 6.7h 8-i0.. 5,1.4 yi 14.1.28,1.72. .42-2.4 (.53) £'''2 8 A 1 136'^-’ 85s 8*41.56^.7. 1 70,* • 1 7 1.32.20-32 £7.0 J I 137 22.3s 8 “ (n).6 J r 138 6.0 s 8 “ in) J I 139 i ^ 0 s 8* 1 (n) 1 J 1140 ! 1.5s ' 8 * J 90 Te I09d ' iToeer 8 -., \Z7^^ 9.3h 8-61 ,42.36. 06. E69 A Tel28 31.79 9y(jOf6-»2Ct 127.90448 J ^‘^Te!29^ ,34.ld| 69m IT,I06^*14S.IQ' e'.8‘ 57028, 46. 163L 70. 746,02 21-126 7-l^E(48 A Tel30 34.48 '^(oe+. 20 ) I29.90624J pTel 30h 8’.42, 57-2 46, 7.7700 1 I3P'^ 25.0m 8"2-i.L7 ,.»i’.41 .28-L30 £2.28 A Tel32 78h 8"22(Oe-2l4) ,.22e,.050.-(£7. .53-27) Ml d ”Te I33<"- 53m 1125m 8'i324!8'261- y 911 7312. ^7.8^408. 074-203385-188 4 Tel34 43m 8 - ,.080-.262 4 Tel35 lls ' J Tel36 ~ 33s 8 - 88 76 78 80 82 84 86 Tel2l '• 150d 1 17d IT062 |c ,.212 ,y.57..5t i£i 29 Tel22 2.46 <^21-1 ) 121.90307 "'-Tel23 • Tel24 4.61 ^(.05*7) 12190284 "'Te 58d IT.IIO ®0350 125'^ 6.99 oyi.e 2490442 J Tel26 ia7i a-yU3+8) (25.90332 # -Te 127^^ Tel28 31.79 I77(j0»6*r20l 127.90448.# “^Te 129 34.!di- 69m 1T,)06W-145JO" e*.8‘ 't028.4€^ 1 6^- 70. 746^ 21-126 7-l4^El48 A Te!30 : 34.48 ! ^(02 •♦•.20) 129.90624# TelSI'^' 30h i25.0m 8*42. #-2.1.17 57*2 46r" 11.45, -2J ■ j 29*130 r'82*j^EZ28 A Tel32 1 78h 8~.22(09-2 M ■ ,228.09a- (87.1 93-27) j E5> A > Tel33' 53m i25m ^ 1248^265 , 9i3 73 c. FT-.-i J Tel34 43 m , ItJ A Tel35 0 4 Tei36 ^ t, 0 1 J 1 TiTdl 170885 ,.1590 0.87 n2.o«V Sy440 £06 ez9o«s I09d ITJO087 0~.r d 9.3h 8-.69.- ,.42..36 06- £ 69 A ^bl20'" 5.76d' 16.0m f.y 20.18*1.67." H7.ioeJ« 090- i,U7 2 62 .E2.69 Sbl21^ 57.25 9ylD6«-7«60) 120.90392 A Sbl22'- 4.2m i 2.74d IT02S l#"i *1.197. rT079 l,Vi4 TO61 O !e-i972^ Sbl23^ 4a75 dy(j02*O4*42) (22.90421 A St 20.3fT IT.025 96s IT.OlO fsis *124'- lJ60.2d 8"-6l." ,.603691. -64-2.7 oy7 HE29I6 Sb 125^^" 2.73y 8*30..I2..6I.-- ,42^60CVI090- 67IU09..035) £.76 A Sb laorn 8*19 y.42,87 rr’r 126 ia4d 8 * 1 9 ."' ,42,67. Sbl27'^ 3,80d 8"79.i5gii.--, (.69,- •) 76^47178.25 J.4^-)056i-'~ £ 1.^ 129# Sbl28 10.4ml 9.0h 8-2.6." 8"'0- 1 15 ,.75.-31, 31-791 Je4 3 4 Sbl29 4.34h 8*59,155,1 82, (144. ! 78L54.9118-2I 1027-140) £-2 5 # Sbl30 8m 37m 8- 18* ,.20-i2{,i9- 219 Sbl31 23jOm 8- ,99. 64 d Sbl32 45s I 3lm d Sbl33 27m 0 r»y. 2 K\ J Sbl34 4 Sbl35 1 x*-'* 1 J j 245d[ 8.58 ITj 065 ,024 lay 2 jAxe^ Snl20 32.85 »y<'-O0l-r.l6) 119.90220 J -76y I26.2h 8* 354 8“ 383 y.037 jno, £391 .^£383.^ Snl22 4.72 121.90344 # ^•^Sn 123- 403fryi29d 8*L26.--8*1.42;- ,.160.', 1.08 .i£l-42.i Snl24 5.94 oyCM-*-4mW 12190527.# ^•Sn 9.6m 8*104. 7 332'.' 20-195 I9.65d| 123-22bJ ^34.^ Snl26 ~ IO*y 8*1 19) ' ,092.067,060 142,67.-) J Snl27 4.2m 2.12h 8*2-7 |8* ,49 |,L)0.92. 27-28 .E-3J A Sn 128 590m 8*8.,7.(2.6.') ,.04-97.(T5J1. ••) il3 d Snl29 ''2ml 7 5m 8- 8' T'H A Snl30 2.6m 8- d Snl3l 1 3m 0- d Snl32 Cm 8 * A Sni33 A ] i — 1 In 118” 45m ' 5.1s 8*1.1 t^*42.-- lp.-Xl.23 T^.2-1 2-0 .£< 2 A win 119“’ 18m ' 2.2m 8*2-7, 8*1-6 1-8. ,.82.-- 7024. 90.- IT 30.# £2.5 A '"'In 3.2s 8*56,- ,M7 120 48 s 8*22.- roalfle. 09-26 In 121 3.1m 30s 8*17 8* ,94 In 122 8s 8 — 5 ,1.14.1.0 E~67 A In 36s, 8*4,6 1 123 ; 6s 8* ,1.10 £''-4,5.# In 124 ~ 4s 8 - 5.3 ,1.11.99.121 £'''7.4 A Ini i8s ; 25 25s # 78 80 82 84 7v 70 72 74 76 77 76 75 74 73 72 64 80 Hg 200.59 og3.7»IO* Hgl79 3.5s 0 6.08 Hgl80 6s O 5.96 Hgl8l 3.6s O 6.00,5.91 Hgl82 lOs 0\t 0 5.85 Hgl83 9s 0*.* a 5.91,5.83 Hgl84 32s 0*.t y.157,.237 0 5.54 Hgl85 52s 0*.t 0 5.65,5.57 Hgl86 1.4m *.0* r.ii.,25.- o5.ll Hgl87 3m y!l^-.40 05.14? Hg 188 " 3.7m *.0* 1 05.142 p r0,l4,jl4.,l93.". 79 Au 196.967 o^9ae Aul77 l.3s 06.(2 Au 178 3s 0 5.92 Aul79 7.5s 0 5 85 Aul8l Ms 05.62,5 48 Aul83 49s o 5.34 Aul84 I.Om €.0* y.163,.273,.362 Aul85 4.3 m 0 5.07 Au 186 I2m €.^* 7.I6..22,.30,.4I ?Au! ai4s 7.11. e,-- 1^1 8m ■ 0 4.69 ,1 noy '■ 78 pt 195.09 eg 10 RI73 Short a &t9 Ptl74 0.7 s a 6.03 Pt 175 2.1 s a 5.95 Ptl76 6.6s o 5.73 Pt 177 6.9 s o 5.52 Ptl78 21 s O 5.44 Pt 179 33s o 5.15 Ptl80 52 s o 5-14 Ptl8l 5ls 0 5.02 Pt 182 2.9m € 0 4.64 Pt 183 7m € a 4,73 «-pt 184 Om»|42m| 16m 1.72.1.85 |4.49 y.l55, .192,-394,- Pt 185 t.lh 7,035, .63,1.56 Pt 186 !' 2.3h f € 0 4.23 1 7.065..14,.I9, ; ■66,1.40,- Ir 192.2 Irl7l I.Os o 5.91 Irl72 2s a 5.81 Irl73 3s a 5.67 Irl74 4s a 5.48 Irl75 5s 0 5.39 Irl76 8s Q 5.12 Irl77 2is oS.OI Irl8l SHORT Ir 182 15m ^.0* y.13,.28."- Ir 183 58m € y.24,- Ir 184 3.2 h r.264,.120,491- 4.3 Ir 185 II 14 h r. € (| 7.024-.667 p' Os 190.2 »b 0sl76 ^ 3.6 m y.776,L29l. .857.-- Osl78 5m 0sl79 8m Os 180 24 m € r.020 Os 2.8m €,0*\.75 r.l4S,.1l8 .67-1.47 81 I05m 7.239 .118,— 0sl82 IOy| 27J4 y.426, K<52+3<« .574.1 (779436 .326,213.0889- ‘/-Hf ie.6s rr.i6i.< .375 7.217- I79»1 13,75 i7a9 f l.9m ‘ 8*2.94,— .< H y.09(,.2l-2.38 t E3.96 ; 68 Er 167.26 og 1.6 X 10^ Erl52 1 Ms 0 480 ■0* Er 153 36s Q 4 67 0* Erl54 5m 0 4.15 Erl55 5.3m a 4.01 Erl56 < 4 m Erl57 24 m y. 117-2.00 Erl58 2.4h € 3*8 y(.067X.072-.96 e' Er 159 36m € y(.206),.37- 2.60 e” ErieO 29h €, (^*.57,—) ' noy (y.729,.966, .087-2.0) E^.6 Erl6P'-‘ 3.lh €.8*1.2,82, y.21l0..826,O67 -1.8 £2.0 Erl62 0.136 oy160 (61.9267 Er 163=^ ! 75m 1 €.8*19. y.43.l.l.(.30)," p El. 21 [ 67 Ho 164.930 (To 65 Ho 150 ? /v20s Ho 42s 0 4 60 151 36s 0 4.51 04.45 04.38 i£6.4 Ho 6.5m o4 00 153 9.3m € 0 3.95 Ho 325m 0\t 1 y.335,412, .477; 158- 1.25 34 11. 8 m 93.91 Ho 2l6.5m 0*or€ 0396 155 47m 8*2.1 7.040, ,14, Ho 156 55m <.4*l.e.2.9.1,3 7.136, .266.. 366 .100- 1.41 Ho 157 15m y.087- 1.20 2-)H( 24m r.099- (.07 rT.067 )I58i 5»-| J II. 3m y.099,.2t9. S2-2.62 E4.22 Ho 159 8.2s|33m IT. 20^ t [y.03l-.3»8 1 e-vi.o ^0 4.7h 1 T .060 t.0* y.ll-2.e I60‘^ 25m t.8*S7.- E5.3 "+Ho 6l6s IT.2I1 e- 1 I 6 I"-' I 25h k026,.(0, l.078,.044-| i'E-v.S 1 “■’He 67m r.098, '.098 yOBt-t )l62'"t ., I3m ^*1.061.13 f y.OSI E2.I6 1 N 1 66 Dy 162.50 Og930 Dyl49 '^I5m € Dyl50 7.2 m 0 *.* 0 4.2 y.39 E-v 1.7 Dyl5l 18m 0*.* 0 406 y.l5 E-V2.9 Dyl52 2.38h t.25$ a 3.7 151.9247 Dyl53 6 h y,08l„100,,082- '54 0 3,5 152.926 I3h 0 3.35 154 rs,|0®y 0 2.85 1539243 Dy 155^^ I0.2h f.2275>65-t.95 £2.10 Dyl56 Dy 1575/-) aih y.326^l62..063, '.061,. 144-1 28 E-v (.( Dyl58 ao9o oy 100 157.9244 "HDy O.I22ins IT.II5 yJ2,.lA .080- 22 159 I44d r.098,A8a .29, E.38 DyieO 2.29 0-^55 I5a9252 0yl6l»^^ 1088 1 7^590 ieo.92«9 65 Tb 158.924 «7o27 Tb KX)m r.i2..i4, .70 147 24m 0 * y-30,-- Tbl48 70m €,8*4.S,- y.78, 1.12 £5 6 TbI 4.15m € 0 3.99 149 4.l3h €,0395 y.17-1.21 £38 Tbl50 3.lh €, 0 * y.64..93 £4 79 Tbl5l I79h € y.lOe,.l6-l 3 a 3.42 150.923 T 4m €. 8 * y.23, 14 bl52 J7.6h €,^*2.8.1.9, y.344.’587, .12-2.7 E4.2 Tbl53=^ O.I9ms|24d IT,08|M€ ^cua?. □ 1..17;.016- 1.34 Tb 8h € y,123:- 154 I8h € y.l23,’ E'\.3.4 Tb 155^1 5.4d € y.0866,.1053, 019-.65 E-V.9 »TI: 9*? 156'" S.ld 2.01^ E'v2.4 Tbl57^ I60y € y.054 £.07 J n07,J7 ' ‘Sr; IT.MO J E >158 04 ?.94«..9«4, .0795- U9 .099, .219 *120 ET9S Tbl593^ 100 16 a38(m 0 903, 620328 88 Ra Ra206 0.4s a 7 27 Ra207 l.3s 0 7.13 Ra208 l.2s 0 7.13 Ra209 4.7s a 7.01 Ro2IO 3.8s a 7.02 Ra2!l I5s 0 6.91 211.001 Ra2l2 I3s 0 6.67 212.000 Ra2l3 2.7m a 6.62,6 73. 6.52 213.000 Ra2l4 2 6s 0 7 14 214.000 Rq215 l.56ms 0 8.7a7.88.6.l7 215.0027 Rq216 < Ims o 9 3 216 0035 Fr Fr203 0.7s a 7.13 Fr 2 2,2s 0 7,03 >04 3.3s 0 6.97 Fr 205 3.7s a 6.92 Fr 206 15.7s 0 6.79 206.00 Fr 207 I5s a 6,77 207.00 Fr^^208 a 6.65 200.00 Fr 209 a 6.65 209.00 Fr 210 3.0m 0 6.57 210.00 Fr 211 3.08m 0 6.53 210.9953 Fr 212 ^ 19m 06 26.6.38,6.41, 6.34,- 212.00 Fr 213 34.7s 0 6.77 £2.10 212.9962 Fr2 3.4ms 0 6,55, 6.48,' ’14 5.0ms 06.42, 8.36,' 2139990 Fr2l5 «lms a~9.36,' 215,0004 116 118 120 122 124 126 128 86 87 Fr Fr203 0.7s 0 7,13 Fr ^ 2.2s. 0 7.03 >04 3.3s 0 6.97 Fr 205 3.7s a 6.92 Fr 206 I5.7s a 6-79 206.00 Fr 207 I5s 0 6.77 207,00 Fr 1208 38s 0 6.65 206 00 Fr 209 54s 0 6.65 209.00 Fr 210 3.0m 0 6.57 210.00 Rn Rn200? 3s 0 6.77 Rn20l 3s a 6,77 Rn202 Ms 0 6.64 Rn^ 28s 0 6.55 105 45s 06.50 Rn 204 75s O 6.42. 203.99 Rn205 2.8m 0 6.26 204.99 Rn 206 6.3m a 6.26 205,99 Rn 207 Mm € o 6.13 £'-4 8 Rn 208 22m € a 6.(5 E~3.0 Rn209 30m 6 0 6.04 E~4.0 At At 194 Short At 195 Short At 196 0.3s 0 706 At 197 0.4s 06.96 At 1 l.5s 0 6.85 98 5s 0 6.75 At 199 7s 0 6.64 At2 4,3s 0 6.54 >00 42s 06.41, 6.46 At 201 1.5m 0634 At 2.6mP 06.23 202 3.0m 0 6.13 E~8I At 203 7.4m € 0 6.09 ^~5.6 _ At 204 9.1 m € 0 5.95 £~7.l At 205 26m a 5.90 E~4,9.. At 2 2.8h .06 31m O5.70," r.07 At 207 l.79h € a 5.76 £3.7 At 2 6.2h >08 l.6h y685, .660,-177, 05.65" E~5-0 108 110 112 114 116 <18 120 122 85 At At 194 Short At 195 Short At 196 0.3s 0 706 At 197 0.4s 06.96 At 1 l.5s 0 6.85 98 5s 06.75 At 199 7s o6.64 At2 4,3s 0 6,54 .00 42s 0 6.41, 6.46 At 201 1,5m 0634 At 2,6mP 0 6.23 202 3.0 m 0 6.13 At 203 7.4m £ a 6.09 t~5.8 At 204 9,lm £ a 595 £'-7.1 84 Po Pol92 0.5s 0 6.58 Po 193 Short o 6.98 Po 194 0.6s 0 6.85 Po 2.0s a 6 TO 195 5s O 6.61 Po 196 ~ 5.5s 0 6.52 Po 26s 0 6.38 97 56s O 6.28 Po 198 l.75m o6.ie Po 1 4,2m 0 6.06 99 5,2m 15.95 Po 200 1 1.5 m 0 5.86 Po2 9.0m 0570 01 ^ 15,4m oS.68 Po 202 44m £ a 5.58 £-3.0 Po203 30m £ 0 536 £"4.5 83 Bi 208.980 oj, 34mb Bi 190 ? C6.5 Bi 191 2 14s 0 6.9 0 6.31 Bi 192 ~ 40s 06.05 Bil 3.2s 0 6.5 93 ^^705 05.89 Bil94 85s 0 5.6 Bil 0 6.10 95 2.5m 0 5,4 Bi 1962 78m ■ o5.ei Bil97? I.7m O 6.2 BN98 ll.9m £ r 198*1,064 Bi 199^^ 24.7m o5S0 B1200’ 35 m € yl03,.462 £'-6 5 Bi 53 m £ 0525 20 r IMm £ y.6290 F--4? Bi 202' 95m £ y. 422, .96 82 Pb 207.19 cg.ie Pb 194 1 Im r-204 Pb 195 17m € y.O99D..303 Pb 196 37m yl92..240..253,-- £'-2.8 [iv+ip^ 42 m r,2220. 305 [T.234 r.085 197^ ? E~4.l Pb 198 24h € y 173 .290. .031 -.865 £'-1.0 iivtpt 123m 1T.424 199^ l.5h f.8*2-0 y367, 27-LI3 Pb 200 2lh £ y.l48..l42,.23S, -268.033-45 n>b 6ls 17629 201'^ 84h €.8*- y.330, ,06-1.4 £2 81 Tl 204.37 a„3.7 Tl 191 lOm € 75TI 1 Im € r.ii..42 92c-i lOm f 9/4, Tl 2.1m IT<.025 r.365 93“^’ 23m € 25.. 26, .27-33 Tl 32.8m € r-097 05.8? 94 34m € y.43 s^TII95^ 3.6s l.l7h IT.099 €.^*'-1,8 X.303 y.037, .226-38 rr^TI 1 l.4lh y084. .426 IT.I20 r034. 24 96<^' l.6h € y426 £4,6 . 275 iTl I97>^^ 0.54s 2.83h rr222 € y.i^ y.l52, .018-1,01 £2.2 l.87h e.y-040. IT 261 y.283." 1982- 5h €,8*2.4, 2.1." y4i2. 3hT1 199*^ 28.7ynsi 7.4h [T,383. < „ ,029k^' , 206. ;g^.24715f 'fI.I .035-49 200^- 34ms |26.lh IT0.2I k.8'*- y0~536 |l.06. y360.l.2(.'^'” .116-2.01 £2.454 1 1 200.59 1 ,016,057 .053 r.26l..56 056-124 95'^ 9.5b r7B.061. E~l-5 Hg 196 0146, <^(,20 + 9.0*171 199.9658 3/+HC 238h IT.I65, .134 y.279. .I30," 197'^ 64. !h £ y.0770, .I9I,- £.76 Hg 198 10.02 <^(ienb+?) 197.96676 43m rT.370 y.ise 1 199*^ t&84 <^'-209C 104 106 108 110 112 114 116 118 - Hg incomplete here, complete on previous page. Note TH220 Th22l l.7mt at 15.9 47 Th222 2.8ms 0 7.96 Th2Z3 0.6s a 7.5 223.0209 Th224 Us 0717.6-99. y.)77.-- .24.0215 1(1225™ 8m a 646, 6.31 -680 X 322..362..246 225.0239 T)i226 31m 06.33.6.22.- 7.III..242..I31,-- 226.0249 T)i227m 2flf»WlS.72d 060375.958. 5.755," 7-236, .006-443 af~450 227.0277 T)i228 ia;Btiil.9l3v a5.42,&34,-- yOe4,.216..l3,.17 Oy~l23,<7j<.3 228.0288 Th229=" 7340y 04.84,4.81.-- 70I7-.27 0-^33 229.0317 Th230. ai78xlO*y 04.68.4.62.-- 7.(36e,.ll-.25 °7'^40.a, PO y TH233 22.2 m 8-I.24." 7.029-.90 roo«4 Ro2l8 Short 2 ia.oor Fr 217 Short a a3> 217005 Ra2l9 lOms 0766.796 2)9.010 Rq220 '^23ms 0 746,690 y.465 2200110 Rq22I 29s S66I0,&758, r089iJ92.J76,- 221.0139 Ra222 38s 06.56.-- r.325,-- 222.0154 Ra223l^ i^3ll.43d OS7I4.5.605.-- 7.270,031-580 al30. o$- 22f.0l42 Fr 222 )5m 0- E2.03 Fr223<^^' 22m g*M5 / r05a0ea06l-dl 0 5 34 EI.I49 223.0197 Fr 224 2.7m 0- £~3.l Fr225 3.9m 0- Fr226 i.4m 0- 144 130 132 134 136 136 140 142 Fr 211 306m 0 6 53 2:u 9953 Fr 212 ^ 19m 0026036041 634. 7 2,2 00 Fr 213 34.7s 06.77 E2.I0 212 9962 FrS 3.4ms Q 0.55. 646 ’14 5.0ms 0042, 8.36,- 2159990 Fr2l5 « Ims a"9.36.- 215,0004 Fr2l6 Short O9.0I 216.00 Fr 217 Short o 0.31 217005 Fr 218 5ms a 7.85. •• 218.0075 Fr 219 21 ms a 730,-- 219.0093 Fr 220 28s o 6.68,6.64,-' 220,0123 Fr 221 4.8m a 6.34. 6.12.-- 7.2I8..063-.4I2 no8" 221.0142 Fr 222 I5m 0- E2.03 Fr223’'*' S 3 22 m fl-n5 / 7060.060.061-81 0 5-34 EI.I49 223.0197 Fr 224 2.7m 8- E~3.l Fr225 3.9m 8' Fr226 1.4m 8’ Rn2IO 2 4h 0604 4 209 9095 Rn 21 1'" ’ I5h 7 032*1 80 □ 576585.562 r069, 17. 23 F? Rn 212 25m 0 6,27 2m 9907 Rn2l3 I9ms 0 0.09 212.9939 Rn2l4 Short 0 9.04 214.00 Rn2l5 ~ 1^8 0 8.67 214.999 Rn 216 .05ms a 0.05 216.0003 Rn 2I7 ^h .5ms O 7 74 217.0039 Rn2l8 35ms 0 713,6.54 7-61 210.0056 Rn 219 rtM3.96s 06.817,6.551, 6.423,-- y.27l,.40l,-- 219.0095 Rn2^ 06.288,5.747 7.542 0V<-2 220.0114 Rn22l 25m 0- E'^I.O Rn 222 S3 3.82^ 05.486. 7.51 (T_~,72 222.0175 Rn 223 .7h 0- Rn224 l.9h 8- Rn225 4.5m 8* Rn226 6m 0- Af209®^’ 55h r 70. 5,5. (95. 091 0564 At 2!(T^' e.3h 7(180.2451463 046*2.35 0536*5.52 At 211^^ 7.2lh *67 iam467i.O6.09^ 0 586 -■> £.750 At 212 At 213 Short 0 9,07 212.993 At 214 0 0.70, •• 213.9963 At 215 At 216 ,35ms 0 7005. •• 2160024 At 217 32ms a 707, •• 7.260.455, .595 no8" 217.0046 140 0.12s 1 0 762. 700 7-06 1 022s 0 766. 7.60 7.06? 211.9907 .lOms 0 8.00,7.60 7-S..40 214 9987 ~ 2 s 0 6-695,6.653. 6.757 0' 210.0006 0.9 m 0 6.27 0~ 219.0113 124 126 128 130 132 134 136 138 At 205 26m a 090 E-49 1 At 206 i At 207 1.79h f 0 5.76 £3.7 1 At 208 At209'^-' 5.5h 6 7,7e,.55,.195,09l 0 5.64 E3.49 At 210"*’ 8.3 h 71.180.245,1483, .046-2.35 0536-5,52 E388 At 2119^ 7.2 Ih y.67 (oTtMayi.oe.Bg^ 05.86 ■•) E.750 1 At 212 At 213 Short 0 9.07 212.993 At 214 0 0.78. •• 213.9963 At2l5 At 216 .35ms 0 70O5,-- 2100024 At 217 32ms 0 707, • • 7-260, 455,.595 no8‘ 1 2)7.0046 ' 2.8h 31m O5.70,-- 7.07 E---6.0 6.2h l.6h 7685. -660..I77. loses" E~5.0 0-l2s 0782, 788 7. 06 0.22s 0 766, ; 760 1 7-06? 211.9907 .lOms 0 8.00,7.60 7~.40 214.9987 2s 1 0 6.695.6653. 6 757 8‘ 216.0086 0.9 m o6 27 0' 2i90iii Po204 3.5h 0 S38 r 00. 27 - - C'2 5 Po2 .64ms IT.16 7-71 05 l.8h e 0 5.22 £•>.36 Rd206 lOd 7.060,063-1320 0 5.22 £(.80 2.6s 1T.26 7.82410 IT.31 r ^07^ 5.7h f.0*-89." 7.10-206 05.12 £2,91 B2 P 02 O 8 2.896y 0 5.11 e. 7.6, .28 207.9812 Po209‘^ I03y Q4,88.-- 7.261, .263 2088824 PO 2 IO 2ai3a40d o 5,305, - 7-803 ^<.5mb ■♦^<03) ’^209.98288 20.98666 »9*Po2I^ aii.7,-- &30^is x2|.5ja 6.785, 121196887 Po2l3 4/is O 0.38,7.62 2)2.9928 Po2l4 SfSi 164^5 O 7688.6.69 7.792 2)3 99520 Po2l5 1.78ms O 7384.-- 8“ 7.443 2)4.9994 P 02 I 6 Ql5s a 0778. ■ 216.00)9 Po2l7 06®* 6.243d r. 8*98 r 803,881 516,1.72, Bi 2 O.ITtns IT 1 7.119-.97 07^* 30y y570, 1.0630. 1.770, •• E2.36L '«-»Bi3 257ms IT.921 7-5(0, -064--650 D8‘^' 366x IO=y 72.615 E^7 61209=^ 100 „ >axlO y c^(i5mb + I9mb) 208.98039 ®->Bi2IO [gBia S.OId aA.9S,4.9l, q4£5, Bi 211'’'-' 2.14m 06.622,0278,- 7.351 0-.6O 210.9873 Bi 212 7.727.785-1.80 (08.79-10.55) 0605,609.” Bi 213®'-' 46m 8" 1,42,), 02 7.440.” 05.07,5.55 EI.42 Bi 214"-' p.609.L76«.rr3-SC« 0908.8.95-10.50 I5«755ii.4.900i2e7 r063..i9l £5.26 Bi2l5 »Pb 202 PJML.MB. Ml- 490 ’-Pb204 ”«Pb205‘'- ”Pb206 D.I26ms |23£ 11.510.203^30 7.803,-881,- wPb 2 07l^ Pb20e 52.3 oy,«'(5mb 207.97665 Pb209a^ 3,3lh 8“.64 E 64 Pb2IO TBfSl 22 y 8'.0I5, .061 7,0465 03.72 £.061 Pb 2 l|i’'’i 2021 36.1m fl-).37,.55.-- 7405,-832.427. ^L3^,065-).270 Pb2l2 IBRI I0.64h 8" 34..58.-- 7.239..300..I15- 4)5 E.56 Pb213 I0.2m 0- £~).8 Pb2l4 SS 26.Sm 8-.69,.74.)03.-- 7-352..295,053- 777 £104 6. 2 s ! IT.025 < 52. Ih r279. 401,66 :.82 6&9rd rr.912 7-289- 889 J 1.48 a 2.6 OyST jJsjsg 44ms IT.0262 r-saa- 3xl0^y E~035 O.0Os| 2ZQ IT 1.06 7-570 (^.7) 12(^97590 9mti20I''+ l.9ms I 73h IT.22. € S0 7.167, r-331,-- .130031 Wi -166 2022 - a5amsll2.2d IT.460 € 7.490 7.44, 1 -96, fTL22-52 TIS 29 O^LO 202. .50 97235 1 2042 - 62/18 1 3,0Oy 7,41. .71 jP'.763 ja-yZZ £-.763 £■^35 Tl 205'^ 70.50 tr^ 84.77.4,72,- y '2-98 91 Pa Pa224 0.6s a Pa 225 ~ Is Q725 22&03 Pa 226 l.8m 0 6.86.6.82,- - E2.78 226.028 Pa227<5^ 3a3m o 647.642.- - y.065, EI.OO 227.0288 Po 2280+) 26h y.058-1.89 0608,5.^-614 r.J3-.35 E2.I0 228.0310 Pa229<5/-) l.4d r.0424 °5m% y.026-.07l E.35 Pa 230 I7.7d t.055- 1.03 ^.41 r052 a4-T6-5.34 0501 .450-505 y.OI9-.38 c^20I, l!EB25.52h 19’ 30.-- y.0842D, .017- .268 E.306 130 132 134 136 138 140 142 Note - Th incomplete here, complete on previous page. 84 105 260.2 > lOms 0 9.7 261? 0. 1 -3s 0 9.4 104 257 ''-'4.5s a 9.00,8.95878 8.70 258? 1 Ims SF 259 ~3s 0 677.0.86 260? 0.3s SF 261? *v im a 0.2-63 103 Lr Lr 256 35s 0 8. 4, •• Lr257 ? a 65-8.6 25710 Lr258 or 259 8s 102 No No 251 0. 8 s ae. 60. 8.66 No 252 2.4s 0 8.41 SF No 253 1.6m o 8.01 253.091 No 254 56 s O 61 SF 254.091 No 255 3.0m o e.oe 255.09 No 256 3.2s Q 6.43 SF No257 23s 0 8.23,8.27 101 Md Md252 8m € Md 255 28m € 0 734 E-V.85 2550906 Md256 l.3h € O 710 Md 257 ~ 5h € 0 700 SF Md258 54d 0 6.73.6 78 Fm Fm244 ~ 3.3ms SF Fm245 4s 0 6.15 Fm246 l.3s a 8.24 SF hm 9s o8.ie 24/ 35 s 0 7.87. 7.93 Fm248 •61m O 7.87, 7.83 SF 248.0771 Fm249 '^2.6m O 7.53 249.079 Fm250 30m a 7.43 250.0795 Fm25l 7h € a 69 y.4l E-vl.2 Fm252 23h O 7.04,7.00 SF 252.0826 Fm253 2.6d € a 6.95.6.66 - y.145,.272 E.I9 Fm254 3.24h a 720.7.16.7.06 7.04I..098..I5 SF ■ 254.0866 Fm255^'‘ 20. Ih 0702.697,641- y. 081,. 059." SF 255.09 Fm256 2.63h SF 0 69 Fm 25719'’- 80 d r.062, 18, .24." SF Fm258 <0.2s SF Es Es245 , l.3m a 7.70 E-V2.9 Es246 7.7 m 0 7.33 E~3.4 Es247 5.0m € a 7.33 £^-2.3 Es248 25m 6 O 6.88 E'\<2.8 Es249 2h € 0 6.77 E 1.41 249.0763 Es250 8h € E-va.i Es25l l.5d € a 6.48 E'X/ .6 251.0799 Es252(7+) ~ I40d a 6.64.5.9- 6.6 y.40,. 07-57 252.0828 Es253^^^ 20.5d o6M5.73-6.63 7.04l6X)0e8-.9O SF oysso o-„(180-H4) ’^253.0847 ^s254'" 39.3h 1 2764 ff-.44.Ul..- 36 44. >646,044-606- Es255 39d 0-.I9 0 631.627.622 SF oy~ 40 Es256 22m 0- Es257 <20h 0- ' Cf24l ? a 7,31 Cf242 3.4m 0 7.36 Cf243 lim € 0 7.06,7.17 Cf244 20m 0 7.21 244.0670 Cf245 44m € 0 7.14 £1.52 Cf246 36h 0 676,6.72.-- 7.042, .096, .146 SF 246.0688 Cf247 2.5h € 7.295-42..46 E-V.8 Cf248 350d O 6.27,-- SF 2460723 Cf249^ 352 y 05SX590A93. 6,20," 7388,.333,.253," SF 9y 0" SF k248'^ I6h 0-.6S E".65 E+~.7 Bk249^^ .3ms 31 Id 0-.125 0 541." 7-327307 ™Bk 2lms 7-043 (4i) 2Sfts 7.036 250^^ 3.22h 0 .73,1.76 7. 99 .IJO 3 ," 0j~lOOO EI.76 BK25I 57m 0~.5,~I.O y,037.094..l40. .184 En,l.4 Cm239 2.9h < f.(e0 eA,r.7 Cm 240 26.8d Q629.-- SF 240.0555 Cm24li'^i 35d 7.47. .60 05l94,S73-6O8 7.149 E.77 Cm242 I63d 06. 1 1.607.- • 7.0440..I02-.94 SF 0L'''25.(r,<5 ^242.0S88 Cm 243^ 32y 35.78,574,527- 7 28,.23A- 6.07 aJSO O', 700 ’^243.0614 Cm244 34ms 16.1y nT75,90,- 0541. '5.-- rO*29. SF 0-43 Cm 245" 8.3xl0^y 0 536.530.-- y.l73,.l3 C^~270 Of 2000 2450654 Cm246 4.71 X lo’y 0 539.5.34 SF 0-^9 246.0672 Cr 25^4 r-22 n247 I.6xl0> o o-yieo Of 108 247.07 Cm2A8 3,52xl0’y O 5.08.5,04 SF V 248.07 Cm 249 64m 0~.S E.9 Cm250 l.l X lo“y SF Cm 252 <2d Am238 06msll.9h SF |< 7.98,. 96. ,36. .95,1.39 £'^2.3 Am239«^ 12. Ih °^E8, Am240 Q,9ms| 5lh SF l< “ 7. 043. .099, .99. 89.- • E*^l.3 Am 241^ 433 y 0 549.460-555 70596,0264-77 SF Oy(<-3mb+90 -3 + 620) ' 241.0567 Am242‘- 16m3| 5Hll6.0lh SF 1 l52]Hfl-.63. ITJM9 r -67 a 5.21.5.1*, -h-042 -i5S^ff,23ro Am243^ 7370y 0526 523.4.x- 5.35 7-075, - [^95+ 5),<7, <07 >^243.0614' Am244®"* .9ms| [l-)| lO.lh Sf_j26m|g-49 e’-5.-[7?^.£k43- y,0*3 .90 e IT, 2000 e^-wSOO E, 429 Am245<5/+) 2.04h 0-.9O,"- y.036,.252, .240^96," •• E.903 An 39m 154,- IT? •- 12462^ 25.0m fl3l.L60. 2.10 7l.0e,.80, .17-1.74 E2.29 Am247 22m 0- ya285.0.226 E~l.7 i 1 Pu237^'- aiSsI 45.6d IT.I45 k 'yX)33*09< 1537.966 •''2100 237,0403 Pu238 874 y 05.50.9.46. •• y.044..100-.8t SF 0^540. o-,f7 ^238.0499 Pu239 24,390y 0516,5.15,5.11, •• r.052,.039-.77 SF ff271 O', 742 7 ^ 239iB2l Pu240 6600y a5l7,512.-- 7. 045. .I04-.688 SF OL 20 O ov 9iIoM 22h $’ ? P0~5Z %o44-I.(0 O', 2070 EI.29 Np239^ ^35d /9’.44,-- 7.045- 504 (^+25X0-, <1 E.724 |i-'Np240 75m \65m 0-2.18, \0:89 y043,.55;^89' 26-M.62T 1.16 •- E2.18 Ie2.I Np24l 16.0m 0-1.3 7.13,. 18 EI.4 156 158 |Bli^ 2bJm|339 IT30*v 1079 7.lilCfjr SF U236, 2.42 X lO^y a 4.49.- • 7^05 *^^'136.0456 U237''^ 6.75d 0*.23,.25.-- 7.0595, 208,014- .371 3y480.o;<.35 E^.514 rtW^w SF «HtO*x H4.20," y.048 ov2.73.0',<.5mb ^ 23e!0509 U239'^^' 23.5m 7.07470435.031- 99 oy22.o-,l5 EI.26 U240 14. Ih 0“.36 y.044 E.48 154 UTTn^^leeh 9*2.29. b-.5(, ■ >.0*3- ^0*3-L3« rT<3?''®^« ( Cu®5 Ga72 8,76 1130 P,I42 5plS9 Pt'93 Np236 a„242 1-3 d HoI 66 Lu' 7» Ta'” TI)23I As 2 i ZpT2 Ba'35 Ce'” Sm'®® Tb'53 71,231 Pa232 0p238 Cp67 Br37 Br®3 Ho*® //i"5 Sn'3i 7e'3i »I87 71200 Pa232 0p239 $c ®8 Cu®3 Go®® Ca32 As72 As 33 Rh'«® Cd"5 Te'3' Ce'*3 SP,I53 *187 Os 193 0p239 3-5 d /yo' 6 « Yb'Z5 7(,I32 0 yl 66 71,175 ppISe P7I93 Au's® Sc53 7bl35 Au'99 BIS'" Sc**7 Ca'*7 Y87 1129 Tal83 p(,2U 5-10 d Xjiaa 71,156 Cs'3l 73,167 Lul7l l_pl72 Lpl77 1/237 Spl26 1131 Xe'33 7bl6l Er'69 Lu'33 Hn52 a^ 32 Agi" |I3I Cs'32 7b'«' p/,209 10-13 d Nd'*z ifiso Ba' 3i odiFZ |I26 Cs'36 Bai'5 Nd"'3 />b 2 ll CS'3® 13-15 d Ra325 15-20 d Os'91 £^156 Pa230 V48 As7® 20-30 d Pa233 71,234 Pg234 Pa233 po234 po234 30-40 d 0b95 Ru'os re' 2 » Ce'5' Ce'5i 40-50 d Pj 59 Hg203 Fe59 HI"' 50-100 d $35 »/,95 51,124 7„I6B Sc'® Co58 Zr®5 7bl60 Tm '«8 »i®5 Sbl24 7bl60 1,192 103-153 d Gd'51 0181 Ta'«3 Ta'»2 150-200 d Ca’5 Lu'31 Lu'3» 200-250 d Zn«5 250 d-1 y Ru'»« Agi"> Ce""* Co®3 Ce'"* Agi.o t-2 y Tm'yi Eu'55 Sni3i 2-3 y Cs'” Sb'35 Pmi*7 Na32 Sb'35 Cs'3’ 3-5 y Zi/122 5-10 y Ra ”8 Co ®0 AC328 Cd"3 Ac328 10-20 y H3 pb2i0 pu2»l Eu'52 Eu'5* 1/237 Eu'53 K,8 S EuI 52 Epl54 20-30 y Hc227 Sr*® Cs'33 30-50 y 50-100 y Sm'5' >100 y R|63 PJIO? /)C^27 Da228 ^^23, C"> Rb*2 Tc53 I 139 Cs'35 r/|33l Pfl233 7/|234 77,238 Be'® ln"5 Am3»2 90 BETA EMITTERS BY ENERGY AND HALF-LIFE* 0 7 0 9 0 911 I.1-I.3 1 3-1.5 1.5-17 1.7-1. 9 1.9- 2.1 2.1- 2.3 2.3- 2.5 2.5-27 2.7- 2.9 2.9- 3.1 3.1- 3.5 3.5- 3.7 3.7- 3.9 3.9- 4.2 f,si 6»« 6«” flb" Te'” S,is» T.no Sr»i |i” *b'” E,17I Ac 228 Pa23" S023 Ge22 Sr®' I'®® Er'7i Ac228 Ep'52 8,208 Ac228 Tm '®® Ge77 Pcjioi fil212 Ac228 to52 Sr®' Y93 fU®2 Ga®® K<) 2n«a 0f7« Nb** ce'>‘ Co^s Ga'2 Pd'o* 4^112 |I30 ful57 Gd'5» lr'9* 0r26 *6®2 Rh'®“ Na2® Co55 |I33 Ga22 Nb®0 Tb'5» Eu'57 Br26 K»2 Zr®7 Rh'oo Re '88 Ir'®® Pr'®2 Re '88 lr'94 Ga22 Rh'oo 48" 2 Tb'5® Ga22 K®2 0r®6 48"2 48" 2 N|S' Aj'i U'* o Sffl'” Ho'“ Os'” Np”« Co22 Pin"'® Pm' 51 Os'93 4 uI98 2|200 Ge«® Bo®9 Cd"5 La'5' Ce'43 0s'®2 Pa232 Np23a ■Sc®’ Sb '22 La'®o Ce'*3 *187 J|200 CU®® ff(l22 Zp22 Te'3i La 180 As22 As 2® Ho'®® Sb'22 ySO Te'3' La'®o A$76 Cu®® Co22 As22 As2® to® 2 As®2 fgin sb'” ,132 ,^1” Zr«9 Re'»« Sf®'" R/i'OO Sb'27 /I32 |I2V Sb'27 7'32 Sf2l® to'®® Sf2l® Ca®2 ff/i'oo 1 1 24 /I32 ^^140 ffl-2'2 to '00 fff2i® S6'"> Jglll J,213 01210 8,2 r 3 >)sZ2 Sn'25 Pm'»8 As22 5b"8 a,7 2 l'“ ifli'iONd'” llb’2 0a"» |i26 Laiwo io'OO r,207 88211 Za'80 i<7'®0 P,I43 p32 Rb«« As” As2® As2® Rp8® Eu'5® Ta^7B Po234 Po234 Rb” Rb®'* 7e'2® re' 29 Rb8® Cd"5 /n'l® Tb'fio Sb'25 Cp56 Sr*® V®I Sb'2® Sb'2® To' 2' Tm'20 Tlb'2® Sn'23 Rh">2 Rh'02 ffO®8 to'O® Pf'"® to'O® to'O® fii2l2 T|20U 1 bc228 Ac228 Ac228 9|2I2 4c228 — Eu'S" Eu'52 8,210 Eu'®2 Eu'5» Cs'32fr223 ^0 i • Tl 1 ill cKoft ii o r ■. C|3S A126 Np238 K®0 8c»’ 0(2'2 originoi cy • ** Broncl', — A. C. 91 AVERAGE AND MAXIMUM BETA ENERGY BY RADIONUCLIDE Nuclide Energy in MeV Nuclide Energy in MeV Nuclide Energy in MeV (av) (max) (av) (max) (av) (max) n - 1 0.301 — Mn- 57 1.099 2.600 Rb- 87 0.079 0.274 H - 3 0.005 0.018 Fe- 59 0.116 1.560 Kr- 88 0.367 2.600 He- 6 1.571 3.515 Fe- 60 0.069 0.240 Rb- 88 2.084 5.177 Be- 10 0.229 0.555 Co- 60 0.094 1.478 Kr- 89 1.395 3.920 C - 14 0.049 0.158 Co- 60A 0.604 1.545 Rb- 89 0.596 3.920 C - 15 2.871 9.775 Fe- 61 1.193 2.800 Sr- 89 0.583 1.470 0 - 19 1.708 4.601 Co- 61 0.463 1.231 Sr- 90 0.200 0.544 0 - 20 1.242 2.850 Co- 62 0.983 2.831 Y - 90 0.931 2.245 F - 20 2.486 5.403 Co- 63 1.577 3.600 Kr- 91 1.561 3.600 F - 21 2.624 5.683 Ni- 63 0.017 0.066 Rb- 91 1.849 4.200 Ne- 23 1.903 4.372 Cu- 64 0.188 0.573 Rb- 91A 1.271 3.000 Ne- 24 0.794 1.980 Ni- 65 0.667 2.100 Sr- 91 0.624 2.665 Na- 24 0.553 4.170 Ni- 66 0.064 0.224 Y - 91 0.615 1.548 Na- 25 1.510 3.801 Cu- 66 1.062 2.630 Sr- 92 0.213 1.500 Na- 26 3.124 6.700 Cu- 67 0.146 0.577 Y - 92 1.454 3.600 Mg- 27 0.689 1.763 Cu- 68 1.284 3.000 Y - 93 1.185 2.890 Mg- 28 0.155 0.457 Zn- 69 0.324 0.913 Zr- 93 0.015 0.063 Al- 28 1.244 2.868 Ca- 70 0.644 1.650 Y - 94 2.368 5.320 Al- 29 1.034 2.500 Zn- 71 0.921 2.240 Nb- 94 0.156 0.500 Al- 30 2.307 5.050 Zn- 71A 0.580 1.500 Nb- 94A 0.480 1.300 Si- 31 0.588 1.476 Zn- 72 0.116 1.600 Zr- 95 0.115 1.130 Si- 32 0.028 0.100 Ca- 72 0.429 3.166 Nb- 95 0.046 0.930 P - 32 0.694 1.709 Ca- 73 0.433 1.480 Y - 96 1.507 3.500 P - 33 0.076 0.248 Ca- 74 1.021 4.300 Nb- 96 0.244 0.'707 P - 34 2.075 5.100 As- 74 0.405 1.355 Zr- 97 0.713 1.910 S - 35 0.048 0.167 Ca- 75 1.425 3.300 Nb- 97 0.464 1.267 Cl- 36 0.252 0.714 Ge- 75 0.404 1.137 Tc- 98 0.086 0.300 S - 37 0.795 4.750 Ca- 76 2.741 6.000 Nb- 99 1.359 3.200 S - 38 0.463 3.000 As- 76 1.085 2.970 Mo- 99 0.398 1.215 Cl- 38 1.515 4.924 Ge- 77 0.637 2.270 Tc- 99 0.085 0.295 Cl- 39 0.847 3.450 Ge- 77A 1.198 2.880 Nb-IOOA 1.450 4.200 Ar- 39 0.219 0.565 As- 77 0.221 0.684 Mo-101 0.419 2.230 K - 40 0.541 1.322 Ge- 78 0.317 0.900 Tc-101 0.478 1.320 Ar- 41 0.479 2.515 As- 78 1.471 4.270 Mo-102 0.436 1.200 K - 42 1.446 3.559 As- 79 0.945 2.300 Tc-102 1.835 4.200 K - 43 0.301 1.838 Se- 79 0.058 0.158 TC-102A 0.792 2.000 Ca- 45 0.076 0.254 Br- 80 0.748 2.000 Rh-102 0.144 0.470 Sc- 46 0.112 1.465 As- 81 1.663 3.800 Tc-103 1.025 2.500 Ca- 47 0.341 2.000 Se- 81 0.531 1.400 Ru-103 0.062 0.710 Sc- 47 0.160 0.601 Br- 82 0.137 0.444 Tc-104 0.978 2.400 Sc- 48 0.220 0.643 Se- 83A 1.379 3.400 Rh-104 0.988 2.441 Ca- 49 0.758 1.984 Br- 83 0.335 0.960 Rh-104A 0.451 1.240 Sc- 49 0.826 2.011 Br- 84 1.221 4.680 Ru-105 0.415 1.870 Sc- 50 1.538 3.500 Br- 84A 0.709 3.200 Rh-105 0.167 0.563 Ti- 51 0.870 2.142 Rb- 84 0.582 1.648 Ru-106 0.009 0.039 V - 52 1.069 2.532 Br- 85 1.037 2.500 Rh-106 1.415 3.541 V - 53 1.068 2.530 Kr- 85 0.249 0.672 Rh-106A 0.345 1.620 V - 54 1.438 3.300 Kr- 85A 0.284 0.826 Ru-107 1.637 4.008 Cr- 55 1.220 2.850 Rb- 86 0.622 1.777 Rh-107 0.425 1.201 Cr- 56 0.587 1.500 Br- 87 1.872 8.000 Pd-107 0.013 0.035 Mn- 56 0.860 2.850 Kr- 87 1.334 3.800 Ru-108 0.466 1.320 A = First excited state. 92 AVERAGE AND MAXIMUM BETA ENERGY' BY RADIONUCLIDE --Continued Nuc 1 ide Energy in MeV Nuclide Energy in MeV Nuclide Energy in MeV (av) (max) (av) (max) (av) (max) Rh-108 1.821 4.500 I -126 0.298 1.250 Pr-146 1.292 3.780 Ag-108 0.624 1.650 Sb-127 0.375 1.500 Pm-146 0.233 0.725 Pd-109 0.359 1.025 Te-127 0.223 0.695 Nd-147 0.227 0.810 Ag-110 1.176 2.869 Te-127A 0.263 0.730 Pm-147 0.062 0.225 Ag-llOA 0.070 0.530 Sb-128 0.199 2.900 Pm-148 0.682 2.450 Pd-111 0.848 2.130 Sb-128A 0.346 1.000 Pm-148A 0.150 0.680 Ag-111 0.360 1.050 I -128 0.791 2.120 Nd-149 0.428 1.500 Pd-112 0.078 0.277 Sb-129 0.729 1.870 Pm-149 0.364 1.071 Ag-112 1 .438 4.040 Te-129 0.498 1.590 Pm-150 0.762 3.122 In-112 0.211 0.656 I -129 0.040 0.150 Eu-150 0.309 1.070 Pd-113 1.397 3.300 I -130 0.276 1.020 Nd-151 0.617 1.995 Ag-113A 0.787 2.000 Cs-130 0.132 0.442 Pm-151 0.312 1.200 Cd-113A 0.181 0.575 Te-131 0.723 2.141 Sm-151 0.019 0.077 Pd-114 0.519 1.400 Te-131A 0.183 2.457 Pm-152 0.858 2.200 Ag-114 2.018 4.600 I -131 0.180 0.810 Eu-152 0.288 1.840 In-114 0.776 1.984 Te-132 0.047 0.220 EU-152A 0.696 1.876 Ag-115 1.249 2.900 I -132 0.512 2.920 Pm-153 0.614 1.650 Cd-115 0.318 1.110 Te-133 0.964 2.400 Sm-153 0.233 0.804 Cd-115A 0.605 1.631 Te-133A 0.567 2.400 Pm-154 0.995 2.500 In-115 0.201 0.630 I -133 0.418 1.540 Eu-154 0.228 1.850 In-115A 0.281 0.838 Xe-133 0.099 0.343 Sm-155 0.558 1.530 Ag-116 2.211 5.000 I -134 0.663 2.410 Eu-155 0.044 0.247 In-116 1.387 3.290 Cs-134 0.152 1.453 Sm-156 0.175 0.730 In-116A 0.294 1.000 CS-134A 0.170 0.550 Eu-156 0.425 2.447 Cd-117A 0.348 1.000 I -135 0.319 1.433 Tb-156A 0.037 0.140 In-117 0.245 0.745 Xe-135 0.307 0.919 Eu-157 0.366 1.270 In-117A 0.641 1.764 Cs-135 0.057 0.210 Eu-158 0.060 2.650 Cd 7 ll 8 0.267 0.800 Cs-136 0.108 0.657 Tb-158 0.271 0.845 In-118 1.754 4.250 Xe-137 1.522 3.600 Eu-159 0.855 2.200 In-118A 0.560 1.500 Cs-137 0.195 1.167 Gd-159 0.294 0.948 In-119 0.605 1.600 Xe-138 0.961 2.400 Eu-160 1.499 3.600 In-119A 1.061 2.650 Cs-138 1.095 3.400 Tb-160 0.189 1.700 In-120 0.876 2.200 La-138 0.056 0.205 Gd-161 0.584 1.599 In-121 1.202 2.900 Cs-139 1.600 4.000 Tb-161 0.155 0.577 In-121A 1.582 3.700 Ba-139 0.910 2.340 Ho-164 0.319 0.990 Sn-121 0.111 0.383 Ba-140 0.282 1.010 Dy-165 0.440 1.280 Sn-121A 0.150 0.420 La-140 0.490 2.200 Dy-165A 0.275 0.840 Sb-122 0.527 1.971 Ba-141 1.158 2.833 Dy-166 0.060 0.400 In-123 1.391 3.300 La-141 0.958 2.430 Ho-166 0.610 1.852 In-123A 2.013 4.600 Ce-141 0.144 0.580 H 0 -I 66 A 0.088 1.100 Sn-123 0.455 1.260 La-142 1.823 4.250 Ho-168 0.716 1.900 Sn-123A 0.540 1.420 Pr-142 0.829 2.153 Er-169 0.096 0.340 Sb-124 0.385 2.313 La-143 1.374 3.300 Ho-170 1.257 3.100 Sb-124A 1.340 3.200 Ce-143 0.371 1.380 Tm-170 0.315 0.967 Sb-124B 1.012 2.500 Pr-143 0.314 0.933 Er-171 0.355 1 .490 Sn-125 0.914 2.330 Ce-144 0.081 0.320 Tm-171 0.025 0.098 Sn-125A 0.788 2.040 Pr-144 1.208 2.984 Tm-172 0.511 1.830 Sb-125 0.084 0.612 Ce-145 0.773 2.000 Tm-173 0.296 0.900 Sb-126 0.737 1.900 Pr-145 0.682 1.799 Tm-174 0.980 2.500 St-126A 0.737 1.900 Ce-146 0.224 0.700 Tm-175 0.757 2.000 A - First excited state. B = Second excited state. AVERAGE AND MAXIMUM BETA ENERGY BY RADIONUCLIDE --Continued Nuclide Energy in MeV Nuclide Energy in MeV Nuclide Energy in MeV (av) (max) (av) (max) (av) (max) Yb-175 0.125 0.467 Os-195 0.746 2.000 Ra-228 0.014 0.055 Tm-176 1.761 4.200 Ir-195 0.297 1.000 Ra-230 0.401 1.200 Lu-176 0.104 0.362 Au-196 0.071 0.259 Ac-230 0.807 2.200 Yb-177 0.465 1.380 Ir-197 0.642 2.000 Pa-230 0.117 0.410 Lu-177 0.140 0.497 Pt-197 0.303 0.670 Ac-231 0.765 2.100 Lu-178 0.886 2.300 Ir-198 1.457 3.600 Th-231 0.059 0.305 LU-178A 0.539 1.500 Au-198 0.315 1.371 Th-233 0.410 1.230 Lu-179 0.476 1.350 Au-199 0.084 0.460 Pa-233 0.063 0.568 Lu-180 1.339 3.300 Au-200 0.669 2.210 Th-234 0.046 0.193 Ta-180A 0.201 0.705 Au-201 0.519 1.500 Pa-234 0.146 0.500 H£-181 0.119 1.050 Au-203 0.698 1.900 Pa-234A 0.515 1.500 Hf-182 0.149 0.500 Hg-203 0.057 0.212 Pa-234 0.476 1.400 Ta-182 0.094 0.524 Tl-204 0.267 0.765 Np-236A 0.149 0.518 Hf-183 0.496 1.400 Hg-205 0.590 1.650 U -237 0.067 0.248 Ta-183 0.191 0.776 Tl-206 0.557 1.571 Np-238 0.206 1.240 Ta-184 0.419 1.360 Tl-207 0.503 1.441 U -239 0.401 1.210 Ta-185 0.624 1.718 Tl-208 0.562 2.380 Np-239 0.135 0.723 W -185 0.124 0.427 Tl-209 0.733 1.990 U -240 0.101 0.360 Ta-186 0.838 2.200 Pb-209 0.195 0.637 Np-240 0.280 0.890 Re-186 0.941 1.066 Pb-210 0.005 0.061 Np-240A 0.662 2.156 W -187 0.236 1.307 Bi-210 0.390 1.161 Np-241 0.458 1.360 W -188 0.256 0.800 Pb-211 0.443 1.390 Pu-241 0.005 0.021 Re-188 0.776 2.116 Bi-211 0.181 0.600 Am-242 0.188 0.630 Re-189 0.237 0.750 Pb-212 0.106 0.586 Am-244 0.510 1.500 Re-190 0.556 1.700 Bi-212 0.783 2.255 Am-244A 0.107 0.380 Re-191 0.661 1.800 Pb-214 0.214 0.980 Am-245 0.287 0.910 Os-191 0.036 0.139 Fr-223 0.382 1.150 Pu-246 0.053 0.330 Ir-192 0.175 0.670 Ra-225 0.089 0.320 Bk-248 0.194 0.650 Ir-192A 0.431 1.500 Ac-226 0.400 1.200 Cm-249 0.282 0.900 Os-193 0.350 1.127 Ra-227 0.444 1.310 Bk-249 0.026 0.102 Ir-194 0.755 2.233 Ac-227 0.010 0.043 Cf-253 ES-254A 0.073 0.331 0.270 1.040 A = First excited state. Source: 0. H. Hogan, P. E. Zigman, and J, L. Mackin, II. Spectra of Indi - vidual Negatron Emitters (Beta Spectra, USNRDL-TR-802 [San Francisco: U.S. Naval Radiological Defense Laboratory, Dec. 16, 1964]). 94 SELECTED GAMMA EMITTERS BY INCREASING ENERGY MeV Nuc 1 ide Half-Life Production cross sec- tion* (barns) or fission yield (%) Yieldt (%) Daughter 0.008 Er-169 9.4d 2b 0.3 Tm-169+ 0.022 Stn-151 87y 100b 4 Eu-151:j: 0.024 Sn-119m 250d .01b 16 Sn-119t 0.030 Ba-140 12. 8d 6.3% 11 La-140 0.031 Mg- 28 21h — 96 Al- 28 0.035 I -125 60d — 7 Te-125+ 0.035 Te-125m 58d 5b 7 Te-125+ 0.037 Br- 80m 4.38h 2.9b 36 Br- 80 0.040 Rh-103m 57m 2.9% 0.4 Rh-103+ 0.040 I -129 1.7Xl0'^y 1.0% 9 Xe-129+ 0.047 Pb-210 21y — 4 Bi-210 0.051 Rh-104m 4 .41m 12.8b 47 Rh-104 0.053 Te-132 78h 414% 17 I -132 0.058 Gd-159 18. Oh 3.5b 3 Tb-159+ 0.058 Dy-159 144d 100b 4 Tb-1594: 0.059 Te-127m 109d 0.09b 0.19 Te-127 0.060 Am-241 458y — 36 Np-237 0.063 Yb-169 32d 11,000b 45 Tm-169+ 0.063 Th-234 24. Id — 3.5 Pa-234m 0.068 Ta-182 115d 21b 42 W -182+ 0.068 Ti- 44 48h — 90 Sc- 44 0.070 Sm-153 47h 210b 5.4 EU-153+ 0.077 Pt-197 18h 1.0b 20 AU-197+ 0.077 Hg-197 65h — 18 AU-197+ 0.078 Ti- 44 48h — 98 Sc - 44 0.080 Ba-133 7.2y 7b 36 CS-133+ 0.081 Ho-166 26. 9h 64b 5.4 Er-166+ 0.081 Xe-133 5.27d 6.5% 37 CS-133+ 0.084 Tm-170 130d 130b 3.3 Yb-170+ 0.084 Th-228 1.90y — 1.6 Ra-224 0.087 Eu-155 1.81y — 32 Gd-1 55+ 0.088 Pd-109-- Ag-109ra 13.47h 40s 10b 5 Ag-109+ 9 *^ SELECTED GAMMA EMITTERS BY INCREASING ENERGY --Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (7o) Yieldt (%) Daughter 0.088 Cd-109-- Ag-109m 453d 40s 3b 5 Ag-109:|: 0.088 Lu-176m 3.7h 35b 10 Hf-176:|: 0.091 Nd-147 11. Id 2.6% 28 Pm-147 0.093 Th-234 24. Id — 4 Pa-234m 0.095 Dy-165 139.2m 800b 4 Ho -1654= 0.099 Gd-153 242d < 125b 55 EU-153+ 0.099 Au-195 183d — 10 Pt-1954: 0.100 Pa-234 6.75h — 50 U -234 0.103 Sm-153 47h 210b 28 Eu-1534: 0.104 Sm-155 23m 5.5b 73 Eu-155 0.105 Eu-155 1.81y — 20 Gd-1554: 0.113 Lu-177 6.7d 2100b 2.8 Hf-177+ 0.122 Co- 57 270d — 87 Fe- 57+ 0.122 Eu-152 12y 5900b 37 Gd-152-- Sm-152+ 0.123 Eu-154 16y 390b 38 Gd-154+ 0.124 Ba-131 12d 8.8b 28 Cs-131 0.128 Cs-134m 2.9h 2.6b 14 Cs-134 0.129 Os-191 15d 6b 25 Ir-191+ 0.133 Hf-181 42. 5d 10b 48 Ta-181+ 0.134 Ce-144 284d 6.1% 11 Pr-144 0.134 Hg-197m 24h — 42 Hg-197 0.136 Se- 75 120. 4d 30b 57 As- 75+ 0.137 Re-186 9 Oh 110b 9 OS-186+ 0.140 Tc- 99m 6. Oh 5.4% 90 Tc- 99 0.143 U -235 7.1Xl0®y — 11 Th-231 0.145 Ce-141 33d 6.0% 48 Pr-I4l+ 0.147 Ta-182m 16.5m 0.07b 40 Ta-182 0.150 Te-131 25m 2.9% 68 I -131 0.150 Cd-lllm 48.6m 0.2b 30 Cd-lll+ 0.150 Kr- 85m 4 .4h 1.57% 74 Kr- 85-- Rb- 85+ 96 SELECTED GAMMA EMITTERS BY INCREASING ENERGY --Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (7o) Yieldt a) Daughter 0.155 Re-188 16. 7h 73b 10 OS-188+ 0.158 Au-199 75. 6h — 37 Hg-199+ 0.163 Ba-140 12. 8d 6.37o 6 La-140 0.164 Xe-131m 11. 8d 0.027o 2 Xe-131+ 0.166 Ba-139 82.9tn 6.07o 23 La-139+ 0.172 Ta-182m 16.5m 0.07b 40 Ta-182 0.185 U -235 7.lXl0®y — 54 Th-231 0.186 Ra-226 1602y — 4 Rn-222 0.191 Mo-101 14. 6m 5.07o 25 Tc-101 0.191 Pt-197 18h 1.0b 6 Au-1974: 0.192 In-ll4m 50. Od 8b 17 Cd-1144: 0.198 Yb-169 32d 11,000b 35 Tm-1694: 0.208 Lu-177 6.7d 2100b 6.1 Hf-177+ 0.21 Ge- 77 11. 3h 0.1b 61 As- 77 0.215 Hf-180m 5.5h 0.34b 82 Hf-180+ 0.215 Ru- 97 2.9d 0.2b 91 Tc- 97 0.230 Te-132 78h 4.47o 90 I -132 0.233 Xe-133m 2.26d 0.167o 14 Xe-133 0.239 Pb-212 10.64h — 47 Bi-212 0.239 As- 77 38. 7h — 2.5 Se- 77m 0.246 Sm-155 23m 5b 4 Eu-155 0.247 Cd-lllm 48. 6m 0.1b 94 Cd-lllt 0.250 Xe-135 9.2h 6.2% 91 Cs-135 0.255 Sn-113 115d 0.9b 1.8 In-1 1 3m 0.263 Ge- 77 11. 3h 0.1b 45 As- 77 0.265 Ge- 75 82m 0.3b 11 As- 75* 0.265 Se- 75 120. 4d 30b 60 As- 75* 0.279 Hg-203 46. 9d 4b 77 Tl-203* 0.284 I -131 8.05d 2.9% 5.4 Xe-1 3!m 0.286 Pm-149 53. Ih 1.3% 2 Sm-149* 0.293 Ce-143 33h 6.2% 46 Pr-143 0.295 Pb-214 26.8m — 19 Bi-214 q SELECTED GAMMA EMITTERS BY INCREASING ENERGY --Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (%) Yieldt (7c) Daughter 0.299 Tb-160 72. Id 46b 30 Dy-160^ 0.305 Kr- 85m 4.4h l.57o 13 Kr- 85-- Rb- 85^ 0.307 Tc-101 14. Om 5.07c 91 Ru-1014: 0.308 Er-171 7.52h 9b 63 Tm-171 0.31 Pa-233 27. Od 7.4b 44 U -233 0.317 Tr-192 74. 2d 750b 81 Pt-192+ 0.319 Nd-147 11. Id 2.67o 3 Pm-147 0.320 Cr- 51 27. 8d 17b 9 V - 51+ 0.325 Sn-125m 9.7m 0.1b 97 Sb-125 0.328 Ir-194 17. 4h 110b 10 Pt-194+ 0.333 Hf-180m 5.5h 0.34b 93 Hf-180+ 0.335 Cd-115-- In-115m 53. 5h 4.5h 1.1b 50 In-115 0.342 Ag-111 7.5d — 6 Cd-lll+ 0.344 Eu-152 12y 5900b 27 Gd-152-- Sm-152+ 0.351 Bi-211 2.15m — 14 Tl-207 0.352 Pb-214 26.8m — 36 Bi-214 0.356 Ba-133 7.2y 7b 69 CS-133+ 0.36 Se- 83 25m 0.004b 69 Br- 83 0.362 Pd-103 17d 4.8b 0.06 Rh-103m 0.363 Gd-159 18. Oh 3.4b 9 Tb-159+ 0.364 I -131 8.05d 2.97o 82 Xe-131-- Xe-131+ 0.368 Ni- 65 2.56h 1.5b 4.5 Cu- 65+ 0.388 Sr- 87m 2.83h 1.3b 80 Sr- 87+ 0.393 Sn-113 115d 0.9b 64 In-113+ 0.393 In-113m 100m — 64 In-113+ 0.403 Kr- 87 7 6m 2.77o 84 Rb- 87 0.405 Pb-211 36.1m — 3.4 Bi-211 0.412 Au-198 2.698d 98.8b 95 Hg-198+ 0.427 Sb-125 2.7y — 31 Sn-125 0.439 Zn- 69m 13. 8h 0.1b 95 Zn- 69 98 SELECTED GAMMA EMITTERS BY INCREASING ENERGY --Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (7o) Yieldt (%) Daughter 0.441 I -128 25. Om 6.3b 14 Xe-1284: 0.444 Hf-180m 5.5h 0.34b 80 Hf-1804: 0.468 Ir-192 74. 2d 750b 49 Pt-192t 0.477 Be- 7 53d — 10.3 Li- 7+ 0.479 W -187 23. 9h 38b 23 Re-187 0.482 Hf-181 42. 5h 10b 81 Ta-181+ 0.487 La-140 40.22h 6.3% 40 Ce-140+ 0.49 Cd-115 53. 5h 1.1b 10 In-115m 0.496 Ba-131 12d 8.8b 48 Cs-131 0.497 Ru-103 39. 6d 2.9% 88 Rh-103m 0.511 Cu- 64 12. 8h 4.5b 38 Ni- 64+-- Zn- 64+ 0.511 Ga- 68 68. 3m — 176 Zn- 68+ 0.511 As- 74 17. 9d — 59 Ge- 74+-- Se- 74+ 0.511 Na- 22 2.60y — 180 Ne- 22+ 0.512 Ru-106-- 367d 0.38% — — Rh-106 30s — 21 Pd-106+ 0.514 Sr- 85 64d 0.8d 100 Rb- 85+ 0.514 Kr- 85 10.76y 0.3% 0.41 Rb- 85+ 0.52 Se- 83 25m 0.004b 59 Br- 83 0.527 Xe-135m 15.6m 1.8% 80 Xe-135 0.53 I -133 21h 6.5% 90 Xe-133-- Xe-133m 0.53 Cd-115 53. 5h 1.1b 26 In - 1 1 5m 0.533 Nd-147 11. Id 2.6% 13 Pm-147 0.537 Ba-140 12. 8d 6.3% 34 La-140 0.538 I -130 12. 4h 28b 99 Xe-130+ 0.554 Br- 82 35.34h 3b 66 Kr- 82+ 0.559 As- 76 26. 5h 4.5b 43 Se- 76+ 0.564 Sb-122 67h 6b 66 Te-122+ 0.570 Bi-207 30y — 98 Pb-207+ 0.583 Tl-208 3.10m — 86 Pb-208* SELECTED GAMMA EMITTERS BY INCREASING ENERGY --Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (%) Yieldt (7c) Daughter 0.596 As - 74 17. 9d — 61 Ge- 74+-- Se- 74+ 0.599 Sb-125 2.7y — 24 Sn-125 0.603 Sb-125 60d 3.3b. 97 Te-124+ 0.605 Cs-134 2.05y 28b 98 Ba-134+ 0.609 Bi-214 19.7m — 47 Po-214 0.619 Br- 82 35.34h 3b 41 K4- 82+ 0.622 Ru-106-- 367d 0.387o — — Rh-106 30s — 11 Pd-106+ 0.637 I -131 8.05d 2.97o 6.8 Xe-131-- Xe-131m 0.658 Ag-1 lOtn 253d 3b 96 Cd-110+ 0.658 Ag-110 24.4s 89b 4.5 Cd-110+ 0.662 Cs-137-- 30y 5.97o 85 — Ba-137m 2.55m — — Ba-137+ 0.669 I -130 12. 4h 28b 100 Xe-130+ 0.67 I -132 2.3h 4.47o 144 Xe-132+ 0.686 W -187 23. 9h 38b 27 Re-187 0.695 Pr-144 17.3m 6.17o 1.5 Nd-144 0.697 Te-129tn 34d 0. 347o 6 Te-129 0.724 Zr- 95 65d 6.47o 49 Nb- 95 0.726 Ru-105 4.44h 0.97o 48 Rh-105m-- Rh-105 0.727 Bi-212 60. 6m — 7 T1-208-- Po-212 0.740 Mo- 99 67h 6.17o 12 Tc- 99-- Tc- 99m 0.743 I -130 12. 4h 28b 87 Xe-130+ 0.747 Zr- 97-- 17. Oh 6.27c 92 — Nb- 97m 60s — — Nb- 97 0.748 Sr- 91 9.67h 5.97o 27 Y - 91-- Y - 91m 0.756 Zr- 95 65d 6.47o 49 Nb- 95 0.765 Nb- 95 35d 6.47c 100 Mo- 95+ 0.773 I -132 2.3h 4.47c 89 Xe-132+ 100 SELECTED GAMMA EMITTERS BY INCREASING ENERGY--Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (%) Yieldt (%) Daughter 0.777 Br- 82 35.34h 3b 83 Kr- 82# 0.78 Te-131m 3 Oh 0.44% 60 Te-131 I -131 0.796 Cs-134 2.05y 28b 99 Ba-134# 0.810 Co- 58 71.3d — 99. Fe- 58# 0.832 Pb-211 36.1m — 3.4 Bi-211 0.835 Ga- 72 14.10h 5.0b 96 Ge- 72# 0.835 Mn- 54 303d — 100 Cr- 54# 0.847 Mn- 56 2.58h 13.3b 99 Fe- 56# 0.85 Te-131m 3 Oh 0.44% 31 Te-131-- I -131 0.879 Tb-160 72. Id 46b 31 Dy-160# 0.885 Ag-llOtn 253d 3b 71 Cd-110# 0.889 Sc- 46 83. 9d 13b 100 Ti- 46# 0.898 Rb- 88 17.8m 3.7% 13 Sr- 88# 0.90 Pa-234 6.75h — 70 U -234 0.935 Cd-115m 43d 0.14b 1.9 Cd-115 0.966 Tb-160 72. Id 46b 31 Dy-160# 1.02 Mo-101 14. 6m 5.0% 25 Tc-101 1.025 Sr- 91 9.67h 5.9% 30 Y - 91m-- Y - 91 1.063 Bi-207 30y — 77 Pb-207# 1.078 Ga- 68 68. 3m — 3.5 Zn- 68# 1.078 Rb- 86 18.66d 0.7b 8.8 Sr- 86# 1.095 Fe- 59 45d 1.1b 56 Co- 59# 1.115 Zn- 65 245d 0.45h 49 Cu- 65# 1.115 Ni- 65 2.56h 1.5b 16 Cu- 65# 1.120 Sc- 46 83. 9d 13b 100 Ti- 46# 1.120 Bi-214 19.7m — 17 Po-214 1.122 Ta-182 115d 21b 34 W -182# 1.14 I -135 6.7h 5.9% 37 Xe-135m-- Xe-135 1.173 Co- 60 5.26y 19b 100 Ni- 60# 1.21 Y - 91 58. 8d 5.9% 0. 3% Zr- 91# 1.275 Na- 22 2.60y — 100 Ne- 22# SELECTED GAMMA EMITTERS BY INCREASING ENERGY --Continued MeV Nuclide Half-Life Production cross sec- tion* (barns) or fission yield (7o) Yieldt (%) Daughter 1.278 Eu-154 16y 390b 37 Gd-154+ 1.28 I -135 6.7h 5.9% 34 Xe-135m-- Xe-135 1.292 Fe- 59 45d 1.1b 44 Co- 59+ 1.293 In-116m 54. Om 154b 80 Sn-116+ 1.293 Ar- 41 1.83h .61b 99 K - 41+ 1.308 Ca- 47 4.53d 0.3b 74 Sc- 47 1.332 Co- 60 5.26y 19b 100 Ni- 60+ 1.35 Mg- 28 21h — 70 Al- 28 1.369 Na- 24 15. Oh 0.53b 100 Mg- 24+ 1.380 Ho-166 26. 9h 64b 0.9 Er-166+ 1.408 Eu-152 12y 5900b 22 Gd-152-- Sm-152+ 1.426 Cs-138 32.2m 5.8% 73 Ba-138+ 1.434 V - 52 3.76m 4.9b 100 Cr- 52+ 1.460 K - 40 1.26XlO®y — 11 Ca- 40+ -- Ar- 40+ 1 .481 Ni- 65 2.56h 1.5b 25 Cu- 65+ 1.524 K - 42 12. 4h 1.2b 18 Ca- 42+ 1.57 Pr-142 19. 2h 12b 3.7 Nd-142+ 1.596 La-140 40.22h 6.3% 96 Ce-140+ 1.60 Cl- 38 37.3m 0.4b 38 Ar- 38+ 1.692 Sb-124 60d 3.3b 50 Te-124+ 1.764 Bi-214 19.7m — 17 Po-214 1.780 Al- 28 2.31m 0.23b 100 Si- 28+ 1.811 Mn- 56 2.58h 13.3b 29 Fe- 56+ 1.863 Rb- 88 17.8m 3.7% 21 Sr- 88+ 2.614 Tl-208 3.10m — 100 Pb-208+ 6.13 N - 16 7.2s — 69 0 - 16+ 7.11 N - 16 7.2s — 5 0 - 16+ ^Thermal neutron cross-section of target atom for nuclide of interest. tPhoton yield per disintegration. ^Stable element. 102 ACTIVITY MASS RELATIONSHIP - SPECIFIC ACTIVITY The specific activity (SpA) of a radioactive nuclide (disintegrations per unit time)/(unit mass), is calculated from the basic equation: SpA = XN = Where: N = number of radioactive atoms per unit mass, and T, = half-life. h This basic equation can be transformed as follows: by definition: N = 6.0225 X 10^^/atomic mass Ci = 3.7 X 10 10 Substituting : SpA = 0.69315 N 0.69315, 6.0225 X 10 S3 T^ (secs) Tu atomic mass 3.7 X 10^‘ = Ci/gm. This equation is satisfactory when the half-life of the nuclide is expressed in seconds. If, however, the half-life is expressed in other units (such as minutes, hours, days, or years), a separate time conversion is required for each. By substituting the appropriate time conversion factors the following five equations can be obtained. curies/ gram or SpA (T^ ^2 in secs) curies/ gram or SpA (T^ 'a in mins) curies/ gram or SpA (T^ ^2 in hrs) curies/ gram or SpA (T^ ^2 in days) curies/ gram or SpA (T^ in yrs) 1 1.128 X 10^^ (T^) (atomic mass) 1.880 X 10^^ (T, ) (atomic mass) 3.134 X 10^ (Ti ) (atomic mass) 1.306 X 10^ (Tj^ ) (atomic mass) ' 2. 3.578 X 10^ (Tj^) (atomic mass) ( 1 ) ( 2 ) (3) (4) (5) X 3 1 Example: Calculate the specific activity of I whose half-life is 8.05d. Using equation (4) and the mass number as the atomic mass, make the appropriate substitutions: 1.306 X 10^ P 8.05 X 131 1.24 X 10^ The following specific activities were calculated from the above equations, using half-lives from The Table of Isotopes .^ Integer mass numbers were used rather than actual masses, except for where the exact mass was used. (It should be noted that these specific activities are for pure forms of the nuclides only.) More extensive tables of specific activities are available.^ ^Lederer, C. M., Hollander, J. M., and Perlman, I., The Table of Isotopes, (6th ed. ; New York: John Wiley & Sons, Inc., 1967). 2 Goldstein, G., and Reynolds, S. A., "Specific Activities and Half-Lives of C-^mmo Radionuclides," Nuclear Data A, Vol. 1, No. 5 (July 1966), pp. 435-452. ’ 1 373-062 0 - 70 -8 SPECIFIC ACTIVITY Radionuclide Half-Life Curies per gram Radionuclide- Half-Life Curies per gram Hydrogen-3 12, 3y 9.64X10^ Molybdenum-99 67h 4.72X10® Carbon-14 5730y 4.46 Technetium-99m 6. Oh 5.28X10® Nitrogen-16 7.2s 9.79X10^° Ruthenium-106 367d 3.36X10® Sodiutn-22 2.60y 6.25X10^ Iodine-125 60d 1.74X10^ Sodium-24 15. Oh 8.71X10® Iodine-130 12. 4h 1,94X10® Phosphorus -32 14.3d 2.85X10® Iodine-131 8.05d 1.24X10® Sulfur-35 88d 4.24X10^ Barium-133 7.2y 374 Chlorine-36 3.1Xl0^y 3.21X10“^ Cesium-134 2.05y 1.30X10® Argon-41 1.83h 4.18x10’^ Cesium-137 30. Oy 87.0 Potassium-42 12. 4h 6.02X10® Barium-140 12. 8d 7.29X10^ Calcium-45 165d 1.76X10^ Lanthanum-140 40.22h 5.57X10® Chromium-51 27. 8d 9.21X10^ Cerium-141 33d 2.81X10^ Manganese -54 303d 7.98X10® Cerium-144 284d 3.19X10® Iron-55 2.6y 2.50X10® Praseodymium- 144 17.3m 7.55X10'^ Manganese-56 2.576h 2.17X10’^ Promethium- 14 7 2.62y 929 Cobalt-57 270d 8,48X10® Tantalum-182 115d 6,24X10® Iron-59 45d 4.92X10^ Tungsten-185 75d 9.41X10® Nickel -59 8Xl0^y 7.58X10"® Iridium-192 74. 2d 9.17X10® Cobalt -60 5.26y 1.13X10® Gold-198 64. 8h 2.44X10® Nickel -63 92y 61.7 Gold-199 75. 6h 2.08X10® Copper-64 12. 8h 3.83X10® Mercury-203 46. 9d 1.37X10^ Zinc -65 245d 8.20X10® Thallium-204 3.8y 462 Gallium-72 14. Ih 3.09x10® Polonium-210 138. 4d 4.49X10® Arsenic-76 26. 5h 1.56X10® Polonium-212 304ns 1.75X10^’^ Bromine-82 35.34h 1.08X10® Radium-226 1602y 0.988 Rubidium-86 18.66d 8.14x10^ Thorium-232 1.41XlO^°y 1 .09X10"'^ Strontium-89 52d 2.82X10^ Uranium-233 1.62xl0®y 9.48X10"® Strontium-90 28. ly 141 Thorium-234 24. Id 2.32X10^ Yttrium-90 64h 5.44X10® Uranium-234 7.1Xl0®y 2.14X10"® Yttrium-91 58. 8d 2.44x10“^ Uranium-238 4.51XlO®y 3.33X10"'^ Plutonium-239 2.44xl0^y 6.13X10"® 104 UNIVERSAL DECAY TABLE The following table gives the fraction of activity of a nuclide remaining, from .001 half-life to 1.000 half-life. To use this table: 1. Divide elapsed time by half-life (t/T^^). Time must be in the same units. ^ 2. With the answer obtained in Step 1, enter appropriate row along the side and the column at the top. The number obtained is the fraction of original activity remaining. 3. Multiply original activity by this figure to obtain present activity (or the amount remaining). Example : What is the strength of a 210 mCi PoBe source after 180 days? (T^ for PoBe = 138.2 days.) ^ 1. The source has gone 42 days past 1.000 half-life, therefore 42/138.2 = .303. 2. Entering the .300 row from the left and the .003 column from the top gives .81060 as the fraction remaining. 3. Therefore, 210/2 = 105 mCi for 1.000 half-life and 105 mCi X .81060 = 85.11 mCi for the amount remaining at the end of 180 days. UNIVERSAL DECAY TABLE ACTIVITY REMAINING FOR t/T, FROM .001 TO 1.00 % .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .000 .00000 .99969 .99862 .99793 .99723 .99645 .99586 .99516 .99446. .99379 .010 .99309 .99238 .99172 .99103 .99034 .98966 .98898 .98828 .98759 .98693 .020 .98623 .98554 .98487 .98419 .98350 .98243 .98214 .98146 .98076 .98010 .030 .97942 .97874 .97807 .97740 .97671 .97603 .97517 .97446 .97399 .97333 .040 .97262 .97299 .97132 .97065 .96997 .96930 .96880 .96795 .96726 .96662 .050 .96594 .96527 .96461 .96393 .96326 .96260 .96190 .96125 .96058 .95994 .060 .95928 .95862 .95795 .95728 .95661 .95596 .95529 .95452 .95395 .95331 .070 .95264 .95199 .95133 .95067 .95000 .94936 .94870 .94800 .94738 .94673 .080 .94587 .94522 .94457 .94392 .94326 .94261 .94196 .94130 .94063 .94000 .090 .93926 .93888 .93833 .93759 .93693 .93628 .93564 .93499 .93434 .93370 . 100 .93304 .93240 .93175 .93112 .93046 .92982 .92906 .92853 .92887 .92725 . 110 .92660 .92596 .92532 .92468 .92403 .92340 .92276 .92216 .92152 .92085 . 120 .92020 .91956 .91893 .91785 .91766 .91702 .91639 .91575 .91511 .91448 . 130 .91339 .91321 .91265 .91196 .91132 .91069 .91008 .90939 .90841 .90817 .140 .90747 .90691 .90629 .95066 .90502 .90440 .90378 .90314 .90250 .90190 . 150 .90127 .90064 .90002 .89931 .89840 .89816 .89754 .89690 .89627 .89566 . 160 .89504 .89442 .89381 .89319 .89257 .89195 .89133 .89071 .89008 .88949 .170 .88888 .88825 .88763 .88702 .88650 .88579 .88518 .88456 .88393 .88334 .180 .88272 .88211 .88150 .88098 .88030 .87967 .87905 .87885 .87852 .87724 .190 .87663 .87602 .87542 .87481 .87420 .87320 .87300 .87216 .87178 .87118 .200 .87057 .86997 .86937 .86877 .86816 .86756 .86697 .86636 .86576 .86517 .210 .86456 .86396 .86337 .86277 . .86217 .86157 .86082 .86037 .85978 .85919 .220 .85859 .85800 .85741 .85681 .85621 .85579 .85503 .85443 .85384 .85326 .230 .85266 .85207 .85148 .85097 .85030 .84975 .84914 .84853 .84794 .84736 .240 .84677 .84619 .84561 .84502 .84443 .84384 .84326 .84268 .84210 .84152 .250 .84092 .84034 .83976 .83918 .83860 .83802 .83744 .83685 .83628 .83570 .260 .83511 .83454 .83396 .83339 .83283 .83223 .83208 .83166 .83050 .829^3 .270 .82935 .82875 .82820 .82763 .82705 .82648 .82591 .82533 .82476 .82419 .280 .82362 .82313 .82248 .82191 .82136 .82077 .8202] .81962 .81907 .81850 .290 .81792 .81736 .81681 .81624 .81567 .81511 .81454 .81397 .81341 .81300 .300 .81228 .81172 .81116 .81060 .81004 .80948 .80892 .80819 .80779 .80702 .310 .80667 .80609 .80556 .80500 .80444 .80489 .80333 .80277 .80222 .80166 .320 .80110 .80055 .80000 .79944 .79888 .79834 .79779 .79731 .79668 .79613 .330 .79557 .79502 .79447 .79392 .79337 .79282 .79227 .79172 .79118 .79063 .340 .79007 .78953 .78899 .78844 .78789 .78735 .78681 .78625 .78571 .78517 .350 .78462 .78408 .78354 .78300 .78245 .78191 .78137 .78082 .78028 .77974 .360 .77920 .77866 .77813 .77759 .77704 .77648 .77597 .77543 .77489 .77436 .370 .77383 .77329 ,77275 .77222 .77168 .77115 .77062 .77007 .76593 .76901 .380 .76848 .76795 .76742 .76689 .76635 .76582 .76529 .76476 .76423 .76370 .390 .76317 .76272 .76212 .76159 .76106 .76053 .76001 .75948 .75895 .75843 .400 .75790 .75737 .75685 .75633 .75580 .75528 .75476 .75423 .75371 .75319 .410 .75266 .75215 .75163 .75111 .75058 .75006 .74955 .74902 .74856 .74799 .420 .74747 .74695 .74644 .74592 .74540 .74488 .74437 .74385 .74334 .74282 .430 .74231 .74179 .74128 .74077 .74025 .73974 .73923 .73871 .73820 .73762 .440 .73718 . 73667 .73616 .73568 . 73514 .73463 .7*3413 .73361 .73311 .73260 .450 .73208 .73258 .73108 .73057 .73006 .72956 .72958 .72854 .72804 .72754 .460 .72708 .72653 .72603 .72545 . 72527 .72452 .72402 .72351 .72302 . 72252 .470 .72201 . 72151 .72102 .72052 .72001 .71952 .71902 .71852 .71802 .71753 .480 .71702 .71653 .71604 .71554 .71504 .71455 . 71405 .71355 .71306 .71257 .490 . 71207 .71158 .71109 .71060 .71010 .70961 .70912 .70863 .70814 .70765 .500 .70715 .70666 . .70618 .70569 .70520 .70471 .70423 .70373 .70325 .70276 TOE UNIVERSAL DECAY TABLE --Continued ACTIVITY REMAINING FOR t/T, FROM .001 TO 1.00 % .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .510 . 70227 . 70179 .70130 . 70082 .70033 .69984 .69936 .69887 .69839 .69791 .520 .69742 .69694 .69646 .69598 .69549 .69501 . 69453 .69404 .69356 .69309 .530 .69261 .69213 .69165 .69117 .69069 .69021 .68973 .68925 .68871 .68830 .540 .68796 .68735 .68687 .68640 .68593 .68545 .68497 .68450 .68395 .68348 .550 .68307 .68260 .68213 .68166 .68118 .68071 .68024 .67976 .67913 .67882 .560 .66835 .67782 .67742 .67695 . 67646 .67601 .67554 .67507 . 67461 .67414 .570 .67367 .67320 .67274 .67227 .67181 .67134 .67088 .67041 .66995 .66948 .580 .66902 .66856 .66810 .66764 .66718 .66671 .66624 .66578 .66532 .66486 .590 . 66440 .66394 .66348 .66302 .66256 . 66210 . 66164 .66118 .66053 .66027 .600 .65981 .65935 .65890 .65846 .65798 .65753 .65707 .65661 .65616 .65571 .610 .65525 .65480 .65435 .65390 .65344 .65299 .65244 .65208 .65163 .65118 .620 .65073 .65028 .64983 .64938 .6489? .64848 .64803 .64758 .64713 . 64669 .630 .64623 .64598 .64534 .64489 . 64448 .64400 .64356 .64310 .64273 . 64222 .640 .64178 .64133 .64089 . 64044 .64000 .63955 .63911 .63886 .63822 .63778 .650 .63764 .63690 .63646 .63602 .63558 .63514 .63470 .63425 .63382 .63338 .660 .63293 .63250 .63206 .63163 .63118 .63075 .63032 .62987 .62944 .62900 . 670 .62856 . 62813 .62770 .62727 .62683 .62639 .62588 . 62552 .62509 .62466 .680 . 62422 .62379 .62336 .62293 .62250 .62207 .62164 .62120 .62077 .62035 .690 .61991 .61936 .61906 .61863 .61820 .61777 .61736 .61691 .61649 .61606 .700 .61563 .61520 .61478 .61436 .61393 .61350 .61308 .61265 .61223 . 61181 .710 .61138 .61096 .61054 .61012 .60969 .60927 .60885 .60842 . 60800 .60758 .720 .60716 .60674 .60632 .60572 .60548 .60506 .60464 .60422 . .60380 .60339 .730 .60296 .60255 .60213 .60172 . 60130 . 60088 .60047 .60005 .59963 .59922 .740 .59880 .59838 .59797 .59756 .59717 .59673 .59632 .59590 .59549 .59508 .750 .59466 .59426 .59385 .59344 .59302 .59261 .59220 .59179 .59144 .59097 .760 .59053 .59015 .58974 .58934 .58892 .58852 .58811 .58770 .58730 .58690 .770 .58648 .58608 .58567 .58527 .58485 .58477 .58405 .58364 .58324 .58271 .780 .58243 .58202 .58163 .58122 .58082 .58042 .58002 .57961 .57921 .57910 .790 .57841 .57801 .57761 .57721 .57681 .57641 .57601 .57561 .57579 .57438 .800 .57441 .57402 .59362 .57317 .57282 .57243 .57204 .57163 .57124 .57085 .810 .57045 .57005 .56966 .56904 .56886 .56847 .56808 .56768 .56729 .56690 .820 .56645 .56611 .56572 .56533 .56494 .5 6455 .56416 .56377 .56338 .56299 .830 .56359 .56320 .56282 .56243 .56203 .56165 .56126 .56087 .56049 .56010 .840 .55899 .55832 .55794 .55755 .55716 .55678 .55640 .55601 .55562 .55524 .850 .55485 .55447 .55408 .55370 .55328 .55293 .55255 .55217 .55179 .55140 .860 .55102 .55064 .55026 .54988 .54950 .54912 .54874 .54841 .54797 .54760 .870 .54721 .54683 .54646 .54605 .54565 .54532 .54495 .54457 .54419 .54382 .880 .54344 .54306 .54269 .54231 .54193 .54156 .54118 .54081 .54043 .54006 .890 .53968 .53931 .53894 .53856 .53819 .53782 .53745 .53702 .53670 .53633 .900 .53595 .53558 .53538 .53485 .53447 .53410 .53373 .53336 .53299 . 53262 .910 .53225 .53188 .53152 .53115 .53078 .53043 .53005 .52968 .52931 . 52895 .920 .52858 .52821 .52785 .52748 .52711 .52675 .52638 .52600 .52566 .5252^ .930 .52493 .52456 .52420 .52384 .52347 .52311 .52275 .52239 .52203 .52168 .940 .52130 .52094 .52058 .52022 .51986 .51950 .51916 .51898 .51842 , 5180f .950 .51770 .51734 .51698 .51641 .51627 .51591 .51556 .51520 .51484 . > 14-.8 .960 .51402 .51377 .51342 .51306 .51270 .51235 .51200 .51164 .51129 .51093 .970 .51057 .51027 .50987 .50952 .50918 .50881 .50846 .50810 . 50775 .507ul .980 .50715 .50670 .50635 .50600 .50570 .50530 .50495 .50460 .50426 .503^- .990 .50355 .50320 .50285 .50256 .50216 .50181 .50141 .50111 .50077 . LO = 1.000 .50000 .49973 .49938 .49904 .49869 .49838 .49860 .49765 .49731 . 4 ’0 A/Aq, Fraction of Activity Remaining 108 A/Aq, Fraction of Activity Remaining Radioactive Decay, Semi -Log Plot .0002 .0001 8.749 10 Number of Half-Lives 109 Thorium Series (4n)* Nuclide 3 33 'T'Vi 230Pa 338 89 Ac 338 90 Th 334 88 Ra 330 86 Rn 216p« 84 ^° 313pu Historical name Half-life Major radiation energies and intensitiest (MeV) a P Y Thorium 1.41X10^°y 3.95 (24%) __ _ 4.01 (76%) Mesothorium I 6. 7y ... 0.055 (100%) - -- Mesothorium II 6.13h 1.18 (35%) 0.34cl (15%) 1.75 (12%) 0.908 (25%) 2.09 (12%) 0.96c (20%) Radiothorium 1.910y 5.34 (28%) - -- 0.084 (1.6%) 5.43 (71%) 0.214 (0.3%) Thorium X 3.64d 5.45 (6%) . 0.241 (3.7%) 5.68 (94%) Emanation 55s 6.29 (100%) . .. 0.55 (0.07%) Thoron (Tn) Thorium A 0.15s 6.78 (100%) - - - - Thorium B 10.64h 0.346 (81%) 0.239 (47%) 0.586 (14%) 0.300 (3.2%) Thorium C 60. 6m 6.05 (25%) 1.55 (5%) 0.040 (2%) 6.09 (10%) 2.26 (55%) 0.727 (7%) 1.620 (1.8%) Thorium C 304ns 8.78 (100%) - -- - -- Thorium C" 3.10m 1.28 (25%) 0.511 (23%) 1.52 (21%) 0.583 (86%) 1.80 (50%) 0.860 (12%) 2.614 (100%) Thorium D Stable — ■ *This expression describes the mass number of any member in this series, where n is an integer. Example: ®|^Th (4n) 4(58) = 232 tintensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series. ^Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators. Data taken from: Lederer, C. Inc., 1967) U.S. Atomic M., Hollander, J. M., and Perlman, I., Table of Isotopes (6th ed.; New York: John Wiley & Sons, and Hogan, 0. H., Zigman, P. E., and Mackin, J. L., Beta Spectra (USNRDL-TR-802 [Washington, D.C.: Energy Commission, 1964]). 110 Neptunium Series (4n + 1)* Nuclide 94rU 239 90 Th 226 88 Ra 226 89 Ac 221 87 Fr 217 85 At 209 83 Bi Element name Half-life Major radiation energies and intensitiest (MeV) CH e Y Plutonium 13. 2y 4.85 (0.0003%) 0.021 (-100%) 0.145 (.00016%) 4.90 (0.0019%) Americium 458y 5.44 (13%) _ 0.060 (36%) 5.49 (85%) O.lOlct (p.04%) Uranium 6.75d 0.248 (96%) 0.060 (36%) 0.208 (23%) Neptunium 2.14XlO®y 4. 65c (12%) _ 0.030 (14%) 4.78c (75%) 0.086 (14%) 0.145 ( 1 %) Protactinium 27. Od — 0.145 (37%) 0.31c ( 44 %) 0.257 (58%) 0.568 (5%) Uranium 1.62XlO®y 4.78 (15%) _ 0.042 (?) 4.82 (83%) 0.097 (?) Thorium 7340y 4.84 (58%) _ 0.137c (-3%) 4.90 (11%) 0.20c (- 10 %) 5.05 (7%) Radium 14. 8d ... 0.32 (100%) 0.040 (33%) Actinium 10. Od 5.73c (10%) 0.099 (?) 5.79 (28%) 0.150 (?) 5.83 (54%) 0.187 (?) Francium 4. 8m 6.12 (15%) - -- 0.218 ( 14 %) 6.34 (82%) Astatine 0.032s 7.07 (-100%) - -- - -- Bismuth 47m 5.87 (-2.2%) 1.39 (-97.8%) 0.437 (?) Polonium 4. 2p,s 8.38 (-100%) - -- - -- Thallium 2.2m 1.99 (100%) 0.12 ( 50 %) 0.45 ( 100 %) 1.56 ( 100 %) Lead 3.30h ... 0.637 ( 100 %) - -- Bismuth Stable (>2X10^®y) *This expression describes the mass number of any member in this series, where n is an integer. Example: ®||Th (4n + 1) 4(57) + 1 = 229 The (4n + 1) series is included here for completion. It is not found as a naturally-occurring series, tintensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series. ^Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as tntlPator Data taken from: Table of Isotopes and USNRDL-TR-802. Ill Uranium Series (4n + 2)* Nuclide 2 38 92 U 334 90 Th 234 91 Pa m ^Th 2l8p 84 ^° Historical name Half-life Major radiation energies and intensitiest (MeV) a P Y Uranium I 4.51X10®y 4.15 (25%) _ __ _ 4.20 (75%) Uranium 24. Id 0.103 (21%) 0.063cj: (3.5%) 0.193 (79%) 0.093c (4%) Uranium Xg 1.17m 2.29 (98%) 0.765 (0.30%) 1.001 (0.60%) Uranium Z 6.75h 0.53 (66%) 0.100 (50%) 1.13 (13%) 0.70 (24%) 0.90 (70%) Uranium II 2.47xl0^y 4.72 (28%) _ __ 0.053 (0.2%) 4.77 (72%) Ionium 8.0 XlO^y 4.62 (24%) _ _ _ 0.068 (0.6%) 4.68 (76%) 0.142 (0.07%) Radium 1602y 4.60 (6%) _ 0.186 (4%) 4.78 (95%) Emanation 3.823d 5.49 (100%) _ 0.510 (0.07%) Radon (Rn) Radium A 3.05m 6.00 (-100%) 0.33 ( -0.019%) - -- Radium B 26.8m 0.65 (50%) 0.295 (19%) 0.71 (40%) 0.352 (36%) 0.98 (6%) Astatine ~2s 6.65 (6%) ? (-0.1%) - -- 6.70 (94%) Radium C 19.7m 5.45 (0.012%) 1.0 (23%) 0.609 (47%) 5.51 (0.008%) 1.51 (40%) 1.120 (17%) 3.26 (19%) 1.764 (17%) Radium C 164p,s 7.69 (100%) - -- 0.799 (0.014%) Radium C" 1. 3m 1.3 (25%) 0.296 (80%) 1.9 (56%) 0.795 (100%) 2.3 (19%) 1.31 (21%) Radium D 21y 3.72 (.000002%) 0.016 (85%) 0.047 (4%) 0.061 (15%) Radium E 5. Old 4.65 (.00007%) 1.161 (-100%) _ 4.69 (.00005%) Radium F 138. 4d 5.305 (100%) - - 0.803 (0.0011%) Radium E" 4.19m ... 1.571 (100%) - -- Radium G Stable ... - -- - -- *This expression describes the mass number of any member in this series, where n is an integer. Example: ^gl?h (4n + 2) 4(51) + 2 = 206 tintensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series. ^Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators. 112 Data taken from: Table of Isotopes and USNRDL-TR-802. Actinium Series (4n + 3)* Nuclide Historical name Half-life Actinouranium 7.1 X10®y Uranium Y 25. 5h Protoactinium 3.25xl0-y Actinium 21. 6y Radioactinium 18. 2d Actinium K 22m Actinium X 11.43d Emanation Actinon (An) 4.0s Actinium A 1 .78ms Actinium B 36.1m Astatine ~0. 1ms Actinium C 2.15m Actinium C 0.52s Actinium C" 4.79m Actinium D Stable Major radiation energies (MeV) and intensitiest O' 8 Y 4.37 (18%) _ 0.143 (11%) 4.40 (57%) 0.185 (54%) 4.58c * (8%) 0.204 (5%) — 0.140 (45%) 0.026 (2%) 0.220 (15%) 0. 084c (10%) 0.305 (40%) 4.95 (22%) - -- 0.027 (6%) 5.01 (24%) 0.29c (6%) 5.02 (23%) 4.86c (0.18%) 0.043 (-99%) 0.070 (0.08%) 4.95c (1.2%) 5.76 (21%) _ 0.050 (8%) 5.98 (24%) 0.237c (15%) 6.04 (23%) 0.31c (8%) 5.44 (-0.005%) 1.15 (-100%) 0.050 (40%) 0.080 (13%) 0.234 (4%) 5.61 (26%) - -- 0.149c (10%) 5.71 (54%) 0.270 (10%) 5.75 (9%) 0.33c (6%) 6.42 (8%) - -- 0.272 (9%) 6.55 (11%) 0.401 (5%) 6.82 (81%) 7.38 (-100%) 0.74 (- .00023%) - -- 0.29 (1.4%) 0.405 (3.4%) 0.56 (9.4%) 0.427 (1.8%) 1.39 (87.5%) 0.832 (3.4%) 8.01 (-100%) - -- - -- 6.28 (16%) 0.60 (0.28%) 0.351 (14%) 6.62 (84%) 7.45 (99%) _ 0.570 (0.5%) 0.90 (0.5%) 1.44 (99.8%) 0.897 (0.16%) eries. where n is an Integar. 335. 93 ^ 331th 90 in 331 91 337 39 Ac 319 86 Rn 315p Exaniple: al?h (4n + 3) 4(51) + 3 = 207 tintensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series. iComplex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillator^ Data taken from: Table of Isotopes and USNRDL-TR-802. 113 Total Number of Counts ERROR IN COUNTS PER MINUTE AS A FUNCTION OF TOTAL COUNT AND LENGTH OF COUNT. (95% CONFIDENCE LEVEL) Error^^^ in counts per minute 114 H,/t ~T % i2 0.9 ERROR 096 ERROR OFNs'Nfe OFNs-Nb SO— 1_ 9.5 12 T* _8.5 7.0_ _8.0 6.5 - -7.5 6lO_ _7.0 5.5 _ -6.5 6 0.9 Error and 0.95 Error :: OF * :: Low Counting Rates -- INSTRUCTIONS FOR USE Draw a straight line from a point on the left scale that cor- responds to the quo- tient Ng/tg through the point on the right scale that corresponds to the quotient the point where this line crosses the center scale will correspond to the 0.9 and the 0.95 error of the de- termination Ng-N^. 5i0_ _60 4.5 _ 4.0 _ 3i5_ 3.0_ 2. 0 _ -5.5 _5.0 -45 _4.0 -3.0 _2j0 S=L'8 Explanation op Symbols 3 N,- TfC CXXJffTiNG RATE OF THE SAMPLE II INCLUOIN6 THE BACKGROUND )W 00LNT5 PER MINUTE t j- NUMBER OF MWUTES TmE SAMPLE MAS - - COUNTED N^; The colkting rats of the background 5 II IN COUNTS PER MINUTE ^ tL. Number OF lANUTES TK BACKGROUND II WAS COUNTED ♦Jarrett, AECU-262 MonP-126 Ns/t» 0.9 ERROR OF Ng-Nj, 4.00 -i_ INSTRUCTIONS FOR USE 0.95 ERROR OF N,-Nb 4.75 3.75 - - 4.50 Example; Find 0.95 error in Net count Given: N =35 cpm s - 4.25 3.50 — — 4.00 N.^ = 15 cpm t = 20 m s - 20 min 3.25 - 3.75 3.00 — 2.75 2.50- 2.25 - Draw a straight line from a point on the left scale that cor- responds to the quo- tient Ng/tg through the point on the right scale that corresponds to the quotient N^t^j 2.00 the point where this line crosses the center scale will correspond 1.75 to the 0.9 and the 0,95 error of the de- termination Ng-N^. -3. Nb/fb 3.0 2.9 ^ 2.8 2.7 ^ 2.6 2.5 ^ 2.4 — 2.3 2.2 ” 2. 1 2.0 ^ 1.9 1.8 + 1.7 1.6 + 1.5 1.4 1.3 -f- 0.9 Error and 0.95 Error OF \.z-t- Low Counting Rates * Solution N s — = 1.75 s N-h 0.75 Connect line between 3-50 values and read 3.1 cpm on center line. 3.25 - 2.75 - 2.50 - 2.25 explanation of symbols 2.00 Nj: The counting rate of the sample INCLUDING the BACKGROUND IN COUNTS PER minute .50 — I 7 K U' Number of minutes the sample was I. I J counted N(| The counting rate of the background 1.25 -I- 1.50 IN COUNTS PER MINUTE I nc *b number of minutes THE BACKGROUND 1.25 WAS COUNTED 1.00 0.75 0.50 0.00 - 1.00 *Jarrett, AECU-262 8 :S 8 MonF-126 116 U M I H ♦ t I H t < t * * ^ H tti M tf t M M H H - H M } > f f 4 - ♦ f M } I M h t H I |t M ♦ IIM|iin I M I | I I I I | 1 1 t M s,/»« 0.12 ).ll ).I0 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 . 0.01 0.9 ERROR OF Nj-Nb 0. 80 — 1 _ 0.95 0.95 ERROR OF Nj-Nb 0. 75 - — 0.90 - 0.85 0. 70 - - 0.80 0. 65 - _ 0.75 0. 60 - — 0.70 055 - 0. 50 — IKST.-lUCTICnS ?C'l USE Draw a straight line frora a point on the left scale tliat cor- responds to the quo- tient UgAs “t-hrough the point on the right scale that corresponds to the quotient N-^/t^ the point where this line crosses the center scale vdll correspond to the 0.9 and the 0.95 erroh of the de- ternination 0. 45 - 0. 40 - - 0.65 _ 0.55 Nb/tb 0. 12 - O.ll- 0. 10 - 0.09 0.9 Error and 0.95 Error O’" * Low Counting Rates - 0.60 - 0.50 Explanation of symbols Ns^ The counting rate of the sample — 0.45 INCLUDING the background IN COUNTS PER minute n IK ■ V Number of minutes tvc sample *as I counted — 0.40 Nb The counting rate of the background IN COUNTS PER MINUTE tt, Number of minutes the background was counted 0. 30 - 0. 20 - JUO 0. 10. 0 - - 0.30 *Jarrett, AEGU-262 MonP-126 i c.oe-|- ± 0. 07 - 006 - J - O.OS-I- 0.04 JL 0. 03 -^ 0.02 0 01 - 0.20 . 0.10 -0 AVERAGE COUNTING RATE ■^ 100,000 1150,000 __ 20,000 --IO,CXX> -- spoo __epoo -- 1,000 200 100 .50 __20 10 115 0.9 ERROR 0.95 ERROR 500- 1-500 LENGTH OF TIME COUNTED 200 — -200 -„5 2_~ _2 I — 0.5. -_0.5 0.2 — 0.2 0. 1 - 1_0.I The 0.9 Error and 0.95 Error OF Counting Rate Determinations INSTRUCTIONS FOR USE Draw a straight line from a point on the left scale cor- responding to the counting rate of the sample through the point on the right scale corresponding to the length of time the sample was count- ed, The point where this line crosses the center scale corresponds to the 0.9 error and the 0,95 error of the de- termination. Example : The 0.9 error of a sample vihich averaged 1250 counts per minute during a four minute determination is 29 counts per minute. *Jarrett, AEOU-262 MonP-126 30- _ 40__ SO. • 0 -- Toll soil 90. 100. £ 00 __ 500-- 400. 500 600 700. 80C 900. l.OOOJ:- 118 1009 fH 373-062 0 - 70-9 100 1000 10,000 100,000 Number of observations 120 Qpioo , Nov. 1961)], Appendix A, pp. 137-140. Flux density (cnT^sec 132 r Specific gamma ray constant (R m^/h Ci) or (R at Im/h Ci) cm^/g water From The Atomic Nucleus, by R. D. Evans, Copyright 1955, by permission of McGraw- Hill Book Co., Inc. 373-062 0 - 70 -10 Mass Attenuation Coefficients in cm^/g 134 (^_iu) t 1 puH o o o o > 0) S txO V-I 0) c w c o 4-1 o pL, B o CO c o 1 B o 4J •H 4J o r~< *r4 a o T3 cn 3 vD o TJ QJ o Lj 4-) C J= o 4-1 CO CO • X ro •r-4 3 c O •• 1— “4 3 CO O JO 6C CO • m 3 c •I—l • o^ (X ra o B 1— -4 )-i cn o CO o o u - 4-1 o o cn CO 3 • 00 "3 JO 4.4 CO in 4J 3 CO 4-) B o c )-i o r— 4 !-i CD CO u )-l 3 •r4 1 — 1 U-4 o JO • CO o 3 14-1 CN •i—l u T3 o S-4 U-l )-l QJ a 3 o o C4-I •r-l > c oo • 14-1 (U o •r4 ri c o 3 LJ O QJ 3 Lj CO ri C/J "3 JO N — ' c PQ H m o z 3 3 4 4-1 •1-4 !-i JO c 4-1 3 • H -H (U CO c 3 •rH 3 •r4 00 'V o C > r— 1 • c •H O CO Li m o •r4 O CD 1— H u (U M ro o s: CX) 4-1 o c H N o —1 CO • o 4-1 4-» O »r^ c • CO 4-> • QJ 1—^ a CO CO > P4 o a 4J (U QJ • c o C S s: CD m q; o )-i Li 4-i c u o 00 CD +1 4-» •r^ 14-1 v£) ^ r* CO s: CJN O 4-1 1— 1 o r— 1 bO •rH CO N— X CO 4-1 -o o (1) QJ c f— < c c c 3 CO •r^ QJ CO *r-4 • 4-1 1—^ 4J u .—1 c CO c c •i-4 o c ’-a o CD U-l > 4-1 o c 4-1 u-l CL CO o u a e C^J s: •r4 o tc CL ^ o c 6 -i| c U-l • r-4 o CD 'T3 Li 4-> o O c c c ' — ^ CJ 0 O cn •rH •r4 .r- 4-1 c c 4-1 r- T? CO c o o CL -yj O QJ •r^ •r4 Li •r^ 4-J 4-1 c c: u U CO X o; c D JO — > U-1 z: C CO x-i '00 •-I U-l U-i o CO CO o 4-) • — 0 r. 4-1 Of '03 •/ "0 o CO CO L CO w 0 “ u ■f. c . —. *_ c Li ■f. T C“ B 4-> O 0. 3 Q- :: U 0. — 0 c O Li ,.'0 r. i 1— s: L. • 7 "? •* >. C > V. • — • — u u . O' j: - r* -• r 1-. (^_ui) Ti puB “®rl 136 Photon Energy (MeV) MASS ATTENUATION COEFFICIENTS* Photon Energy H Be B C N 0 Na Mg A1 Si P S keV 10 0.385 0.593 1.16 2.28 3.73 5.78 15.5 20.8 26.3 34.2 40.8 51.0 IS .376 .300 0.463 0.787 1.18 1.74 4.58 6.23 7.93 10.3 12.4 15.6 20 .369 .227 .295 .429 0.596 0.826 2.01 2.72 3.41 4.39 5.31 6.66 30 .357 . 181 .206 .251 .304 .372 0.705 0.918 1.12 1.41 1.66 2.07 40 .346 .165 .180 .206 .229 .257 .395 .485 0.567 0.696 0.797 0.968 50 .335 .156 .167 .187 .198 .213 .281 .329 .369 .437 .489 .579 60 .326 . 150 .159 . 176 .182 .191 .228 .258 .280 .322 .350 .404 80 .309 . 140 .147 .161 .164 .168 .181 .196 .203 .224 .234 .259 100 .294 .133 .139 .152 .153 .156 .159 .169 .171 .184 .187 .202 150 .265 .119 .124 .135 .135 .136 .134 .140 .138 .145 .144 .151 200 .243 .109 .114 .123 .123 .124 .120 .125 .122 .128 .125 . 130 300 .211 .0945 .0984 .107 .107 .107 .103 .106 .104 .108 .106 .109 400 .189 .0847 .0883 .0957 .0954 .0957 .0918 .0949 .0927 .0962 .0936 .0966 500 . 173 .0773 .0806 .0872 .0871 .0873 .0836 .0864 .0844 .0875 .0850 .0878 600 . 160 .0715 .0745 .0807 .0805 .0808 .0774 .0797 .0780 .0808 .0784 .0810 800 .140 .0629 .0655 .0709 .0708 .0708 .0678 .0701 .0684 .0707 .0688 .0709 MeV 1.0 .126 .0565 .0589 .0637 .0636 .0637 .0609 .0628 .0613 .0635 .0617 .0638 1.5 .103 .0460 .0479 .0519 .0518 .0518 .0497 .0512 .0500 .0518 .0503 .0518 2.0 .0875 .0394 .0411 .0445 .0445 .0446 .0428 .0442 .0432 .0448 .0436 .0449 3.0 .0691 .0314 .0328 .0357 .0358 .0360 .0349 .0361 .0354 .0368 .0359 .0371 4 .0581 .0266 .0280 .0305 .0307 .0310 .0304 .0316 .0311 .0324 .0317 .0329 5 .0505 .0235 .0248 .0271 .0274 .0278 .0276 .0287 .0284 .0297 .0292 .0304 6 .0450 .0212 .0225 .0247 .0251 .0255 .0256 .0268 .0266 .0279 .0275 .0287 8 .0375 .0182 .0195 .0216 .0221 .0226 .0232 .0244 .0244 .0257 .0255 .0268 10 .0325 .0163 .0175 .0196 .0202 .0209 .0218 .0231 .0231 .0246 .0245 .0258 15 .0254 .0136 .0149 .0170 .0178 .0186 .0202 .0216 .0219 .0234 .0236 .0251 20 .0215 .0122 .0137 .0158 .0167 .0177 .0196 .0212 .0216 .0233 .0235 .0252 30 .0174 .0110 .0125 .0147 .0158 .0170 .0196 .0213 .0219 .0238 .0242 .0261 40 .0154 .0104 .0121 .0144 .0156 .0169 .0199 .0217 .0224 .0245 .0250 .0270 50 .0141 .0102 .0119 .0142 .0156 .0170 .0202 .0222 .0230 .0252 .0257 .0278 60 .0133 .0100 .0118 .0143 .0157 .0172 .0206 .0227 .0235 .0257 .0264 .0286 80 .0124 .00991 .0118 .0144 .0160 .0175 .0213 .0235 .0244 .0267 .0274 .0298 100 .0119 .00992 .0119 .0146 .0163 .0179 .0218 .0241 .0251 .0275 .0283 .0307 150 .0113 .0100 .0122 .0150 .0168 .0186 .0228 .0253 .0263 .0289 .0298 .0324 200 .0112 .0102 .0124 .0153 .0172 .0191 .0235 .0260 .0271 .0299 .0307 .0334 300 .0111 .0104 .0128 .0159 .0178 .0198 .0244 .0270 .0282 .0310 .0319 .0348 400 .0112 .0106 .0130 .0162 .0182 .0202 .0249 .0276 .0288 .0317 .0327 .0356 500 .0113 .0108 .0132 .0164 .0185 .0205 .0252 .0280 .0292 .0322 .0332 .0361 600 .0113 .0109 .0134 .0166 .0187 .0207 .0255 .0283 .0295 .0325 .0335 .0365 800 .0115 .0111 .0136 .0169 .0190 .0210 .0259 .0287 .0300 .0330 .0340 .0370 GeV 1 .0116 .0112 .0137 .0171 .0192 .0212 .0261 .0290 .0302 .0333 .0344 .0374 1.5 .0117 .0114 .0140 .0173 .0195 .0216 .0265 .0293 .0307 .0338 .0348 .0380 ' 2 .0118 .0115 .0141 .0175 .0196 .0218 .0267 .0296 .0309 .0341 .0351 .0383 3 .0120 .0116 .0143 .0177 .0199 .0220 .0269 .0298 .0312 .0344 .0354 .0386 4 .0120 .0117 .0144 .0178 .0200 .0221 .0270 .0300 .0313 .0345 .0356 .0388 5 .0121 .0118 .0144 .0179 .0200 .0222 .0271 .0301 .0314 .0346 .0357 .0389 6 .0121 .0118 .0145 .0179 .0201 .0222 .0272 .0302 .0315 .0347 .0358 .0390 8 .0122 .0119 .0145 .0180 .0202 .0223 .0272 .0302 .0316 .0348 .0359 .0391 10 .0122 .0119 .0146 .0180 .0202 .0223 .0273 .0303 .0316 .0348 .0359 .0391 15 .0122 .0119 .0146 .0181 .0203 .0224 .0274 .0303 .0317 .0349 .0360 .039? 20 .0123 .0120 .0147 .0181 .0203 .0224 .0274 .0304 .0317 .0350 .0361 .Oi 30 .0123 .0120 .0147 .0182 .0203 .0225 .0274 .0304 .0318 .0350 .0361 . (J - * 1 40 .0123 .0120 .0147 .0182 .0203 .0225 .0275 .0305 .0318 .0351 .0361 50 .0123 .0120 .0147 .0182 .0204 .0225 .0275 .0305 .0318 .0351 .0362 .or;, 60 .0123 .0120 .0147 .0182 .0204 .0225 .0275 .0305 .0318 .0351 .0:'62 . u:; ■. 80 .0123 .0120 .0147 .0182 .0204 .0225 .0275 .0305 .0318 .0351 .0362 100 .0123 .0120 .0147 .0182 .0204 .0225 .0275 .0305 .0319 .0351 .0367 . J * Coefficients are "Total with Coherent." Unit is cm^/g. Source: Photon Cross Sections. Attenuation Coef ficients, and Energy Absorption Coefficients From 10 kcV to 00 (NSRDS-NBS 29), 1969. 137 MASS ATTENUATION COEFFICIENTS--Continued Photon Energy Ar K Ca Fe Cu Mo Sn I W Pb U HgO keV 10 64.5 80.9 96.5 173. 224. 86.2 141. 161. 95.5 133. ^ 178. 5.18 15 19.9 25.0 30.1 56.4 74.2 28.2 47.0 55.2 142. ^ 115. 1 63.9^ 1.58 20 8.53 10.8 13.0 25.5 33.5 81.7* 21.3^ 26.0 67.0 85.7^ 71.0+ 0.775 30 2.62 3.30 3.99 8.13 10.9 28.8 41.3 8.67 23.0 29.7 41.0 .370 40 1.20 1.49 1.78 3.62 4.89 13.3 19.4 22.7 10.7 14.0 19.7 .267 50 0.687 0.843 0.998 1.94 2.62 7.20 10.7 12.6 5.91 7.81 11.1 .227 60 .460 .5 60 .648 1.20 1.62 4.41 6.53 7.78 3.65^ 4.87 6.96 .206 80 .275 .324 .365 0.595 0.772 2.02 3.02 3.65 7.89 2-33* 3.35 .184 100 .204 .233 .256 .370 .461 1.11 1.68 2.00 4.43 5.40 1.91^ .171 150 .143 .158 .168 .196 .223 0.428 0.614 0.714 1.57 1.97 2.56 .151 200 .121 .132 .138 .146 .157 .245 .328 .372 0.777 0.991 1.28- .137 300 .0996 .108 .112 .110 .112 .139 .164 .178 .320 .404 0.509 .119 400 .0878 .0949 .0979 .0940 .0941 .105 .116 .122 .190 .231 .286 .106 500 .0795 .0859 .0885 .0840 .0836 .0883 .0946 .0976 .136 .161 .193 .0968 600 .0733 .0792 .0814 .0769 .0762 .0788 .0816 .0835 .108 .125 .146 .0896 800 .0641 .0692 .0712 .0669 .0660 .0661 .0669 .0676 .0799 .0885 .0997 .0786 MeV 1.0 .0576 .0621 .0639 .0599 .0589 .0583 .0578 .0581 .0654 .0708 .0776 .0707 1.5 .0470 .0506 .0520 .0488 .0480 .0470 .0463 .0464 .0497 .0517 .0548 .0575 2.0 .0407 .0439 .0453 .0425 .0420 .0415 .0410 .0411 .0437 .0455 .0475 .0494 3.0 .0338 .0366 .0378 .0362 .0360 .0366 .0367 .0370 .0402 .0418 .0438 .0397 4 .0302 .0328 .0340 .0331 .0332 .0349 .0355 .0359 .0400 .0416 .0435 .0340 5 .0280 .0306 .0317 .0314 .0318 .0344 .0354 .0359 .0407 .0424 .0445 .0303 6 .0267 .0291 .0303 .0305 .0310 .0343 .0357 .0364 .0416 .0435 .0455 .0277 8 .0251 .0276 .0289 .0298 .0306 .0350 .0369 .0378 .0439 .0459 .0480 .0243 10 .0244 .0270 .0283 .0298 .0308 .0362 .0385 .0395 .0464 .0484 .0506 .0222 15 .0244 .0268 .0283 .0307 .0323 .0393 .0425 .0438 .0524 .0548 .0573 .0194 20 .0244 .0273 .0289 .0321 .0339 .0470 .0461 .0476 .0577 .0606 .0636 .0181 30 .0255 .0286 .0305 .0345 .0368 .0470 .0517 .0536 .0659 .0696 .0733 .0171 40 .0266 .0299 .0319 .0365 .0391 .0505 .0557 .0578 .0716 .0757 .0799 .0167 50 .0275 .0310 .0331 .0382 .0410 .0532 .0588 .0611 .0760 .0804 .0850 .0167 60 .0284 .0319 .0342 .0395 .0425 .0553 .0613 .0637 .0794 .0841 .0889 .0167 80 .0296 .0334 .0358 .0416 .0448 .0586 .0651 .0676 .0845 .0896 .0948 .0170 100 .0306 .0345 .0370 .0432 .0465 .0609 .0677 .0704 .0881 .0934 .0984 .0172 150 .0325 .0368 .0394 .0458 .0494 .0648 .0721 .0750 .0939 .0996 .106 .0178 200 .0334 .0377 .0405 .0475 .0511 .0672 .0748 .0778 .0976 .103 .110 .0182 300 .0348 .0393 .0422 .0494 .0532 .0700 .0780 .0811 .102 .108 .115 .0188 400 .0356 .0402 .0432 .0506 .0544 .0716 .0798 .0830 .104 .111 .117 .0192 500 .0361 .0408 .0438 .0514 .0552 .0727 .0810 .0842 .106 .112 .119 .0195 600 .0365 .0412 .0443 .0519 .0558 .0735 .0819 .0851 .107 .113 .121 .0197 800 .0371 .0419 .0450 .0527 .0566 .0745 .0831 .0864 .108 .115 .122 .0200 GeV 1 .0375 .0423 .0455 .0532 .0572 .0753 .0838 .0871 .109 .116 .123 .0202 1.5 .0380 .0429 .0461 .0539 .0579 .0762 .0849 .0884 .111 .118 .125 .0205 2 .0382 .0432 .0464 .0543 .0583 .0767 .0856 .0890 .111 .118 .126 .0206 3 .0386 .0436 .0468 .0548 .0588 .0773 .0862 .0896 .112 .119 .127 .0208 4 .0387 .0438 .0470 .0550 .0590 .0777 .0865 .0900 .113 .120 .127 .0210 5 .0389 .0439 .0472 .0551 .0591 .0779 .0867 .0902 .113 .120 .128 .021 6 .0389 .0440 .0473 .0552 .0593 .0780 .0868 .0904 .113 .120 .128 .0211 8 .0391 .0441 .0474 .0554 .0594 .0781 .0870 .0905 .113 .120 .128 .0211 10 .0391 .0442 .0475 .0555 .0595 .0783 .0871 .0906 .114 .121 .128 .0212 15 .0392 .0443 .0476 .0556 .0596 .0785 .0873 .0908 .114 .121 .129 .0213 20 .0393 .0443 .0477 .0556 .0596 .0785 .0874 .0910 .114 .121 .129 .0213 30 .0393 .0444 .0477 .0557 .0598 .0786 .0875 .0911 .114 .121 .129 .0213 40 .0393 .0445 .0477 .0557 .0598 .0786 .0876 .0911 .114 .121 .129 .0213 50 .0393 .0445 .0478 .0558 .0598 .0786 .0877 .0911 .114 .121 .129 .0213 60 .0394 .0445 .0478 .0558 .0598 .0787 .0877 .0912 .114 .121 .129 .0214 80 .0394 .0445 .0478 .0558 .0598 .0788 .0877 .0912 .114 .121 .129 .0214 100 .0394 .0445 .0478 .0555 .0598 .0788 .0877 .0912 .114 .121 .129 .0214 * K edge, + L edge-- to 20keV 12.6, 81.7; Sn 29.2keV 7.54, 44.3; I 33.2keV 6.62, 36.4; W 10.2keV 90.7, 235.; 11.5keV 170., 235.; 12.1keV 206., 248.; 69.5keV 2.49, 11.3; Pb 13.0keV 67.8, 166.; 15.2keV 112., 146.; 15.9keV 130., 157.; 88.0keV 1.83, 7.45; U 17.2keV45.8, 106.; 20.9keV 62.7, 88.0; 21.8keV 79.8, 91.8; 116keV 1.34, 4.86. 138 MASS ATTENUATION COEFFICIENTS --Continued Photon Energy SlOa Nal Air Con - crete 0. 8 N HsSO ^ Bone Muscle Poly - styrene Lucite Poly - ethyl - ene Bake - lite Pyrex Glass keV 10 19.0 139. 4.99 26.9 5.76 20.3 5.27 2.13 3.25 2.01 2.76 17.1 15 5.73 47.4 1.55 8.24 1.76 6.32 1.63 0.755 1.06 0.728 0.923 5.14 20 2.49 22.3 0.752 3.59 0.849 2.79 0.793 .424 0.551 .420 .492 2.25 30 0.859 7. 45 * .349 1.19 .391 0.962 .373 .259 .298 .266 .277 0.786 40 .463 19.3 .248 0.605 .276 .512 .268 .217 .234 .226 .223 .431 50 .318 10.7 .208 .392 .231 .349 .227 .199 .208 .209 .200 .302 60 .252 6.62 .188 .295 .208 .274 .205 .188 .193 . 198 .187 .242 80 . 194 3.12 .167 .213 .185 .209 .183 .173 .176 .183 .171 .190 100 .169 1.72 .154 .179 .171 .180 .170 .163 .164 .172 .161 .166 150 .140 0.625 .136 .144 .150 .149 .149 .145 .146 .154 .143 .139 200 . 126 .334 .123 .127 .137 .133 .136 .132 .133 .140 .130 .125 300 .108 .167 .107 .108 .118 .114 .118 .115 .115 .122 .113 .107 400 .0959 .117 .0954 .0963 .106 .102 .105 .103 .103 .109 .101 .0954 500 .0874 .0955 .0870 .0877 .0965 .0927 .0960 .0938 .0941 .0995 .0921 .0870 600 .0808 .0826 .0805 .0810 .0893 .0857 .0888 .0868 ' .0871 .0921 .0852 .0804 800 .0707 .0676 .0707 .0709 .0783 .0752 .0779 .0763 .0765 .0809 .0749 .0704 MeV 1.0 .0636 .0586 .0636 .0637 .0704 .0676 .0700 .0685 .0687 .0727 .0673 .0633 1.5 .0518 .0469 .0518 .0519 .0573 .0550 .0570 .0558 .0559 .0592 .0548 .0516 2.0 .0447 .0413 .0445 .0448 .0492 .0473 .0489 .0478 .0480 .0507 .0470 .0444 3.0 .0363 .0366 .0358 .0365 .0396 .0383 .0393 .0383 .0385 .0405 .0377 .0361 4 .0317 .0351 .0308 .0319 .0340 .0331 .0337 .0327 .0329 .0345 .0322 .0314 5 .0287 .0346 .0275 .0290 .0303 .0297 .0300 .0290 .0292 .0305 .0286 .0282 6 .0266 .0347 .0252 .0270 .0277 .0274 .0274 .0263 .0266 .0277 .0260 .0263 8 .0241 .0355 .0223 .0245 .0243 .0244 .0240 .0228 .0232 .0239 .0227 .0237 10 .0226 .0368 .0204 .0231 .0222 .0226 .0219 .0206 .0211 .0215 .0206 .0222 15 .0209 .0402 .0181 .0215 .0194 .0204 .0192 .0176 .0182 .0182 .0178 .0204 20 .0203 .0433 .0170 .0210 .0182 .0194 .0179 .0162 .0168 .0166 .0164 .0198 30 .0202 .0484 .0162 .0210 .0172 .0189 .0168 .0149 .0157 .0151 .0153 .0195 40 .0204 .0520 .0161 .0213 .0169 .0189 .0165 .0144 .0153 .0145 .0148 .0198 50 .0208 .0548 .0161 .0218 .0168 .0190 .0164 .0142 .0151 .0142 .0147 .0201 60 .0212 .0571 .0162 .0222 .0169 .0193 .0165 .0142 .0151 .0141 .0147 .0204 80 .0218 .0605 .0165 .0229 .0171 .0197 .0167 .0142 .0152 .0141 .0148 .0210 100 .0224 .0629 .0168 .0235 .0174 .0201 .0170 .0144 .0154 .0142 .0150 .0215 150 .0234 .0670 .0174 .0247 .0180 .0210 .0175 .0147 .0159 .0145 .0154 .0225 200 .0241 .0695 .0179 .0254 .0184 .0215 .0179 .0150 .0162 .0147 .0157 .0232 300 .0250 .0724 .0185 .0264 .0190 .0223 .0185 .0155 .0167 .0152 .0162 .0240 400 .0256 .0741 .0189 .0269 .0194 .0228 .0189 .0158 .0171 .0155 .0166 .0245 500 .0260 .0752 .0192 .0273 .0197 .0231 .0192 .0160 .0173 .0157 .0168 .0249 600 .0262 .0760 .0194 .0276 .0199 .0233 .0194 .0162 .0175 .0159 .0170 .0252 800 .0266 .0771 .0197 .0281 .0202 .0237 .0197 .0165 .0178 .0161 .0173 .0256 GeV 1 .0269 .0778 .0199 .0283 .0204 .0239 .0199 .0166 .0180 .0163 .0174 .0258 1.5 .0273 .0789 .0202 .0287 .0207 .0243 .0202 .0169 .0182 .0165 .0177 .0262 2 .0275 .0794 .0204 .0290 .0209 .0245 .0203 .0171 .0184 .0167 .0179 .0264 3 .0278 .0800 .0206 .0292 .0211 .0247 .0205 .0173 .0186 .0169 .0181 .0267 4 .0279 .0803 .0207 .0294 .0212 .0249 .0206 .0174 .0187 .0170 .0182 .0268 5 .0280 .0805 .0208 .0295 .0213 .0249 .0207 .0174 .0188 .0170 .0183 .0269 6 .0281 .0807 .0208 .0295 .0213 .0250 .0208 .0175 .0188 .0171 .0183 .0269 8 .0281 .0808 .0209 .0296 .0214 .0251 .0208 .0175 .0189 .0172 .0184 .0270 10 .0282 .0809 .0209 .0297 .0214 .0251 .0209 .0176 .0189 .0172 .0184 . 02 ’! 15 .0283 .0811 .0210 .0298 .0215 .0252 .0209 .0176 .0190 .0173 .0185 .'■1 20 .0283 .0812 .0210 .0298 .0215 .0252 .0210 .0177 .0190 .0173 .0185 . o ; 30 .0283 .0813 .0211 .0298 .0216 .0253 .0210 .0177 .0191 .0173 .0185 40 .0284 .0813 .0211 .0299 .0216 .0253 .0210 .0177 .0191 .0173 .0186 50 .0284 .0814 .0211 .0299 .0216 .0253 .0210 .0177 .0191 .0173 .0186 60 .0284 .0814 .0211 .0299 .0216 .0253 .0210 .0177 .0191 .0174 .0186 80 .0284 .0815 .0211 .0299 .0216 .0253 .0210 .0178 .0191 .0174 .0186 .. J 100 .0284 .0815 .0211 .0299 .0216 .0253 .0211 .0178 .0191 .0174 .0186 * K edge of Iodine -- 33. 2 keV 5. 69, 30. 9. ! VALUES OF THE MASS ENERGY -ABSORPTION COEFFICIENTS Photon Energy (MeV) Mass Energy-Absorption Coefficient, ([J-g n / P), cm^ /g Water Air Compact Bone Muscle 0.010 4.89 4.66 19.0 4.96 .015 1.32 1.29 5.89 1.36 o020 0.523 0.516 2.51 0.544 o030 .147 .147 0.743 .154 .040 .0647 .0640 .305 .0677 .050 .0394 .0384 .158 .0409 .060 .0304 .0292 .0979 .0312 .080 .0253 .0236 .0520 .0255 .10 .0252 .0231 .0386 .0252 .15 .0278 .0251 .0304 .0276 .20 .0300 .0268 .0302 .0297 .30 .0320 .0288 .0311 .0317 .40 .0329 .0296 .0316 .0325 .50 .0330 .0297 .0316 .0327 .60 .0329 .0296 .0315 .0326 o80 .0321 .0289 .0306 .0318 1.0 .0311 .0280 .0297 .0308 1.5 .0283 .0255 .0270 .0281 2.0 .0260 .0234 .0248 .0257 3.0 .0227 .0205 .0219 .0225 4.0 .0205 .0186 .0199 .0203 5.0 .0190 .0173 .0186 .0188 6.0 .0180 .0163 .0178 .0178 8.0 .0165 .0150 .0165 .0163 10.0 .0155 .0144 .0159 .0154 Source: Physical Aspects of Irradiation (NBS Handbook No. 85 [Washington, D.C.: Supt. of Docs., U.S. Government Printing Office, Mar. 1964]), p. 3. 140 e 7 8 a 1 TOTAL XEUTROX CROSS SECTIOXS FOR IXDIU^I AXD CADAHUM SXHVa XI XOIXOZS SSOHO XVXOX 10.0 100 1000 NEUTRON CROSS SECTIONS FOR HYDROGEN AND BORON (eV) 142 SUJBg UT UOTIJOSS SSOJQ Neutron Energy in eV Cross sections for boron, Hg, and HgO taken from BNL-325; for H in paraffin from Havens and Rainwater, Phys. Rev., 73, 7, 733-741 (1948). NEUTRON CROSS SECTIONS FOR HYDROGEN AND BORON (MeV) innn' 2 3 4567S91 2 3 4567S91 2 3 4567891 2 3 4567 > c •iH u (U o W c o u +-> 3 0.5 Mev) 144 10 15 20 T\ ABSORBER THICKNESS -- CM DOSE BUILDUP FACTORS I = Bloe where I = dose rate in back of shield B = buildup factor Iq = dose rate in back of shield = linear absorption coefficient X = shield thickness Dose Buildup Factor (B) for a Point Isotropic Source Material MeV px* 1 2 4 7 10 15 20 Water 0.255 3.09 7.14 23.0 72.9 166 456 982 0.5 2.52 5.14 14.3 38.8 77.6 178 334 1.0 2.13 3.71 7.68 16.2 27.1 50.4 82.2 2.0 1.83 2.77 4.88 8.46 12.4 19.5 27.7 3.0 1.69 2.42 3.91 6.23 8.63 12.8 17.0 4.0 1.58 2.17 3.34 5.13 6.94 9.97 12.9 6.0 1.46 1.91 2.76 3.99 5.18 7.09 8.85 8.0 1.38 1.74 2.40 3.34 4.25 5.66 6.95 10.0 1.33 1.63 2.19 2.97 3.72 4.90 5.98 Aluminum 0.5 2.37 4.24 9.47 21.5 38.9 80.8 141 1.0 2.02 3.31 6.57 13.1 21.2 37.9 58.5 2.0 1.75 2.61 4.62 8.05 11.9 18.7 26.3 3.0 1.64 2.32 3.78 6.14 8.65 13.0 17.7 4.0 1.53 2.08 3.22 5.01 6.88 10.1 13.4 6.0 1.42 1.85 2.70 4.06 5.49 7.97 10.4 8.0 1.34 1.68 2.37 3.45 4.58 6.56 8.52 10.0 1.28 1.55 2.12 3.01 3.96 5.63 7.32 Iron 0.5 1.98 3.09 5.98 11.7 19.2 35.4 55.6 1.0 1.87 2.89 5.39 10.2 16.2 28.3 42.7 2.0 1.76 2.43 4.13 7.25 10.9 17.6 25.1 3.0 1.55 2.15 3.51 5.85 8.51 13.5 19.1 4.0 1.45 1.94 3.03 4.91 7.11 11.2 16.0 6.0 1.34 1.72 2.58 4.14 6.02 9.89 14.7 8.0 1.27 1.56 2.23 3.49 5.07 8.50 13.0 10.0 1.20 1.42 1.95 2.99 4.35 7.54 12.4 * px = mass absorption coefficient (p/p) X shield thickness (cm) X shield density (g/cm^). NOTE: For concrete use an average of aluminum and iron; e.g., B(cone) = [B(iron) + B(A1)] -r 2. DOSE BUILDUP FACTORS --Continued Point Isotropic Source--Continued Material MeV px* 1 2 4 7 10 15 20 Tin 0.5 1.56 2.08 3.09 4.57 6.04 8.64 1.0 1.64 2.30 3.74 6.17 8.85 13.7 18.8 2.0 1.57 2.17 3.53 5.87 8.53 13.6 19.3 3.0 1.46 1.96 3.13 5.28 7.91 13.3 20.1 4.0 1.38 1.81 2.82 4.82 7.41 13.2 21.2 6. 0 1.26 1.57 2.37 4.17 6.94 14.8 29.1 8.0 1.19 1.42 2.05 3.57 6.19 15.1 34.0 10.0 1.14 1.31 1.79 2.99 5.21 12.5 33.4 Tungsten 0.5 1.28 1.50 1.84 2.24 2.61 3.12 - - 1.0 1.44 1.83 2.57 3.62 4.64 6.25 (7.35) 2.0 1.42 1.85 2.72 4.09 5.27 8.07 (10.6) 3.0 1.36 1.74 2.59 4.00 5.92 9.66 14.1 4.0 1.29 1.62 2.41 4.03 6.27 12.0 20.9 6.0 1.20 1.43 2.07 3.60 6.29 15.7 36.3 8.0 1.14 1.32 1.81 3.05 5.40 15.2 41.9 10.0 1.11 1.25 1.64 2.62 4.65 14.0 39.3 Lead 0.5 1.24 1.42 1.69 2.00 2.27 2.65 (2.73) 1.0 1.37 1.69 2.26 3.02 3.74 4.81 5.86 2.0 1.39 1.76 2.51 3.66 4.84 6.87 9.00 3.0 1.34 1.68 2.43 2.75 5.30 8.44 12.3 4.0 1.27 1.56 2.25 3.61 5.44 9.80 16.3 5.1097 1.21 1.46 2.08 3.44 5.55 11.7 23.6 6.0 1.18 1.40 1.97 3.34 5.69 13.8 32.7 8.0 1.14 1.30 1.74 2.89 5.07 14.1 44.6 10.0 1.11 1.23 1.58 2.52 4.34 12.5 39.2 Uranium 0.5 1.17 1.30 1.48 1.67 1.85 2.08 1.0 1.31 1.56 1.98 2.50 2.97 3.67 -- 2.0 1.33 1.64 2.23 3.09 3.95 5.36 (6.48) 3.0 1.29 1.58 2.21 3.27 4.51 6.97 9.88 4.0 1.24 1.50 2.09 3.21 4.66 8.01 12.7 6.0 1.16 1.36 1.85 2.96 4.80 10.8 23.0 8.0 1.12 1.27 1.66 2.61 4.36 11.2 28.0 10.0 1.09 1.20 1.51 2.26 3.78 10.5 28.5 * px = mass absorption coefficient (p/ p) X shield thickness (cm) X shield density (g/cm^). 146 DOSE BUILDUP FACTORS--Continued Dose Buildup Factor (B) for a Plane Monodirectional Source Material MeV 1-LX* 1 2 4 7 10 15 Water 0.5 2.63 4.29 9.05 20.0 35.9 74.9 1.0 2.26 3.39 6.27 11.5 18.0 30.8 2.0 1.84 2.63 4.28 6.96 9.87 14.4 3.0 1.69 2.31 3.57 5.51 7.48 10.8 4.0 1.58 2.10 3.12 4.63 6.19 8.54 6.0 1.45 1.86 2.63 3.76 4.86 6.78 8.0 1.36 1.69 2.30 3.16 4.00 5.47 Iron 0.5 2.07 2.94 4.87 8.31 12.4 20.6 1.0 1.92 2.74 4.57 7.81 11.6 18.9 2.0 1.69 2.35 3.76 6.11 8.78 13.7 3.0 1.58 2.13 3.32 5.26 7.41 11.4 4.0 1.48 1.90 2.95 4.61 6.46 9.92 6.0 1.35 1.71 2.48 3.81 5.35 8.39 8.0 1.27 1.55 2.17 3.27 4.58 7.33 10.0 1.22 1.44 1.95 2.89 4.07 6.70 Tin 1.0 1.65 2.24 3.40 5.18 7.19 10.5 2.0 1.58 2.13 3.27 5.12 7.13 11.0 4.0 1.39 1.80 2.69 4.31 6.30 — 6.0 1.27 1.57 2.27 3.72 5.77 11.0 10.0 1.16 1.33 1.77 2.81 4.53 9.68 Lead 0.5 1.24 1.39 1.63 1.87 2.08 ... 1.0 1.38 1.68 2.18 2.80 3.40 4.20 2.0 1.40 1.76 2.41 3.36 4.35 5.94 3.0 1.36 1.71 2.42 3.55 4.82 7.18 4.0 1.28 1.56 2.18 3.29 4.69 7.70 6.0 1.19 1.40 1.87 2.97 4.69 9.53 8.0 1.14 1.30 1.69 2.61 4.18 9.08 10.0 1.11 1.24 1.54 2.27 3.54 7.70 Uranium 0.5 1.17 1.28 1.45 1.60 1.73 1.0 1.30 1.53 1.90 2.32 2.70 3.60 2.0 1.33 1.62 2ol5 2.87 3.56 4.89 3o0 1.29 1.57 2.13 3.02 3.99 5.94 4.0 1.25 1.49 2.02 2.94 4.06 6.47 6.0 1.18 1.37 1.82 2.74 4.12 7.79 8.0 1.13 1.27 1.61 2.39 3.65 7.36 10.0 1.10 1.21 1.48 2.12 3.21 6.58 px - mass absorption coefficient (m-/p) X shield thickness (cm) X shield density (g/cm^). 147 Transmission through lead of gamma rays from radium [14]; cobalt 60, cesium 137, gold 198 [7]; iridium 192 [15]; tantalum 182 and sodium 24 [29]. 148 1^. ro CO r— 1 S-i e CO 13 B •iH B CO CO o the x-ray beam and with a pulsed waveform. The curves at 50 and 70 kvp were obtained by interpolation and extrapolation of available data (Braestrui), 1914) [2], The filtrations were 0.5 mm of aluminum for 50, 70, 100, and 125 kvp, aud 3 mm of aluminum for 1.50 and 200 kvp [26]. 151 Figure 18. Attenuation in concrete of x rays produced by potentials of 50 to 400 kv. % The measurements were made with a 90° angle between the electron beam and the axis of the x-ray beam. The curves for 50 to 300 kvp are for a pulsed waveform. The filtrations were 1 mm of aluminum for 70 kvp, 2 mm of aluminum for 100 kvp, and 3 mm of aluminum for 125 to 300 kvp (Trout et al., 1955 and 1959) [11]. The 400-kvcp curve was interpolated from data obtained with a constant potential generator and inherent filtration of approxi- mately 3 mm of copper (Miller and Kennedy, 1955) [8] [26]. 152 Figure 19. Attenuation in lead of x rays 'produced by potentials of 250 to 400 kv. The moasnrcmcnts were made with a 90° angle between the electron beam and tlie axis of the x-ray beam. Tlie 250-kvp curve is for a pulsed v'aveform and a filtration of "A mm of aluminunrCHraestrup, 1944) [2|. The 400-kvcp crrve was obtained with a constant potential generator and inherent filtration of approximately 3 mm of copper (Miller and Kennedy. 1955) [8]. The 300-kvp curve is for pulsed waveform and 3 mm of aluminum (Trout et al., 1959) 111] [26j. ^.3 Figure 20. Attenuation in lead of x rays produced by potentials of 500- to 3,000-kv constant potential. The measurements were made with a 0° angle between the electron beam and the axis of the x-ray beam and with a constant potential generator. The 500- and 1,000-kvcp curve were obtained with filtration of 2.88 mm of tungsten, 2.8 mm of copper, 2.1 mm of brass, and 18.7 mm of water (Wyckoff et ah, 1948) [13]. The 2,000-kvcp curve was obtained by extrap- olating to broad -beam conditions (E.E. Smith) the data of Evans et ah, 1952 [3]. The in- herent filtration was equivalent to 0.8 mm of lead. The 3,000-kvcp curve has been obtained by interpolation of the 2,000-kvcp curve given herein, and the data of Miller and Kennedy, 1956 [9]. 154 Figure 21. Attenuation in concrete of x rays ■produced by potentials of 500- to 8,000-kv constant potential. The measurements were made witli a 0° angle between the electron beam and the axis of the x-ray beam and with a constant potential generator. The 500- and 1,000-kvcp curves were obtained with filtration of 2.8 mm of copper, 2.1 mm of brass, and 18.7 mm of water (WyckofI ct al., 1948) [13]. The 2,000-kvcp curve was obtained by extrapolating to broad- beam conditions (E.E. Smith) the data of Evans ct al., 1952 [3]. The inherent filtration was equivalent to 6.8 mm of lead. The 3,000-kvcp curve has been obtained by interpolation of the 2,000-kvcp curve given herein, and the data of Kim and Kennedy, 1954 [5]. Table 12. Half-value layer (Approximate half-value layers obtained at high filtration for the indicated tube potentials under broad-beam couditionsj .attenuating material hvl for various tube potentials 50 kvp 70 kvp 100 kvp 125 kvp 150 kvp 200 kvp 250 kvp 300 kvp 400 kvcp 500 kvcp 1,000 kvcp 2,000 kvcp 3,000 kvcp Lead (mm) ... 0.05 0. 18 0.24 0.27 0.3 0.5 0.8 1.3 2.2 3.C 8.0 12.0 l&.O Concrete (in.). .2 .5 .7 .8 .9 1.0 1. 1 1.2 1.3 1.4 1.8 2. 45 2 M Concrete (cm) .51 1.27 1.8 2.0 2.3 2.5 2.8 3.0 3.3 3.C 4.0 6.2 7. 5 Note. — One tenth-value layer is equivalent to 3.33 half-value layers. Commercial Lead Sheets Thickness Approximate Weight mm in. lb/ft2 0.79 Vs 2 2 1.00 2 V 2 1.19 %4 3 1.58 4 1.98 5/ /6 4 5 2.38 /S2 6 3.17 Vs 8 4.76 Vl6 12 6.35 h ■ 16 8.50 20 10.1 % 24 12.7 30 16.9 % 40 25.4 1 60 Source: Medical X-Ray Protection up to Three Million Volts (NBS Handbook No. 76 [Washington, D.C.: Supt. of Docs., U.S. Government Printing Of- fice, Feb. 1961]), p. 30. Thickness of Lead Required to Reduce Useful Beam to 5 Percent^ Beam Quality Required Lead Thickness (mm) Potential Half Value Layer (mm) 60 kVp 1.2 A1 0.10 100 kVp 1.0 A1 0.16 100 kVp 2.0 A1 0.25 100 kVp 3.0 A1 0.35 140 kVp 0.5 Cu 0.7 200 kVp 1.0 Cu 1.0 250 kVp 3.0 Cu 1.7 400 kVp 4.0 Cu 2.3 1000 kVp 3.2 Pb 20.5 2000 kVp 6.0 Pb 43.0 2000 kVcp 14.5 Pb 63.0 3000 kVcp 16.2 Pb 70.0 6000 kV 17.0 Pb 74.0 8000 kV 15.5 Pb 67.0 Cobalt 60 10.4 Pb 47.0 ® Approximate values for broad beams. Transmission data for brass, steel and other material for potentials up to 2000 kVp may be found in reference [15]. Measurements on 1000 kVp and 2000 kVp made with resonant-type therapy units. Data for 6000 kV taken from reference [16], for a linear accelerator. Data for 2000 kVcp, 3000 kVcp, and 8000 kV derived by interpolation from graph presented in reference [17]. The third column refers to lead or to the required equivalent lead thickness of lead-containing materials (e.g. lead rubber, lead glass, etc.). Source: Medical X-Ray and Gamma-Ray Protection for Energies up to 10 MeV (NCRP Report No. 33 [Washington, D.C.: National Council on Radi- ation Protection and Measurements, Feb. 1968]), p. 45. 156 CONCRETE* EQUIVALENTS (mm) OF LEAD AT DIFFERENT X-RAY TUBE POTENTIALS Lead Thickness (mm) Tube Potential 150 kVp 200 kVp 300 kVp 400 kVp 1 80 75 56 47 2 150 140 89 70 3 220 200 117 94 4 280 260 140 112 6 — — 200 140 8 — — 240 173 10 — — 280 210 15 — — — 280 ^Density 2.35 g/ cm^. IRON EQUIVALENTS (mm) OF LEAD AT DIFFERENT X-RAY TUBE POTENTIALS Lead Thickness (mm) Tube Potential 150 kVp 200 kVp 300 kVp 400 kVp 600 kVp 800 kVp 1000 kVp 1 11 12 12 11 10 9 8 2 25 27 20 18 16 14 13 3 37 40 28 23 19 17 16 4 50 55 35 28 23 20 18 6 — — 48 38 30 26 23 8 — — 60 45 36 31 28 10 — — 75 55 42 36 32 15 — — — 75 55 48 43 20 — — — — 70 60 55 50 — — — — — 125 110 Data for tables from NBS Handbook No. 50. Table 1. — Mean milliroentgens per milliampere-second at 12 inches by kilovolt peak and filtration categories for dental X-ray units Total fil- tration Kilovolt peak (milli- meters of A1 50 55 60 65 70 75 80 85 90 equiv- alent) 0.5 91. 11 96. 03 101. 44 107. 59 114. 73 123. 10 132.94 144. 49 158. 00 1.0 58.38 63. 32 68.54 74. 27 80. 75 88.24 96.98 107. 20 119. 15 1.5 36. 61 41. 64 46. 72 52. 09 57.99 64. 66 72.35 81. 30 91. 75 2.0 23. 26 28. 45 33. 45 38. 52 43. 89 49. 81 56. 52 64. 25 73. 27 2.5 15.79 21. 19 26. 19 31. 01 35.92 41. 14 46. 93 53. 52 61. 16 3.0 11. 65 17.33 22.37 27. 02 31. 52 36. 12 41. 04 46. 55 52. 88 3.5 8. 30 14. 32 19. 47 24. 01 28. 17 32. 19 36. 32 40. 80 45. 88 4 0 3. 19 9.61 14. 94 19. 43 23.30 26. 82 30. 21 33.73 37. 62 4.5 — . 67 6. 24 10. 73 14.39 17.46 20. 18 22. 80 25. 56 Table 2. — Mean milliroentgens per milliampere-second at 12 inches by kilovolt peak and filtration categories for nondental X-ray units Kilovolt peak Total filtration (millimeters of A1 equivalent) 45 50 55 60 65 70 0.5 67.02 78. 58 89.90 101. 16 112. 51 124. 11 1.0 43.25 52.83 62. 16 71.41 80.74 90.31 1.5 27. 62 35.49 43. 10 50. 62 58.21 66. 03 2.0 18. 35 24. 80 30. 97 37.04 43. 17 49. 52 2.5 13.69 18.99 24. 00 28.90 33. 84 38.99 3.0 11. 87 16. 29 20. 42 24.43 28.46 32.70 3.5 11. 12 14.96 18.48 21. 87 25.28 28. 88 4.0 9.69 13. 21 16. 41 19. 46 22.52 25. 76 4.5 5.81 9.29 12. 44 15.43 18.42 21. 57 Total filtration (millimeters of A1 equivalent) Kilovolt peak — Continued 75 80 85 90 95 100 0.5 136. 14 148. 76 162. 12 176. 40 191.76 208. 36 1.0 100.30 no. 86 122. 16 134.36 147. 63 162. 14 1.5 74.26 83. 04 92.56 102. 96 114. 42 127. 10 2.0 56.25 63.54 71. 55 80. 43 90. 36 101. 49 2.5 44. 52 50. 59 57.37 65.01 73.68 83.55 3.0 37.30 42.43 48. 25 54. 93 62. 63 71. 51 3.5 32. 83 37. 29 42.44 48. 43 55.43 63. 61 4.0 29. 33 33.41 38. 17 43.75 50. 33 58. 07 4.5 25. 06 29. 03 33. 66 39. 12 45. 56 53. 15 Tables from Population Exposure to X-Rays U.S. 1964, PHS NOo 1519. 158 EXPOSURE (mR/mAs) 50 10 0.5 0.2 2.5mm AI-TOTAL FILTRATION mR/mAs vs. FSD for rays 150 kVp 125 kVp no kVp 100 kVp 90kVp eOkVp 70kVp ^ 40kVp J 1 ^ _J 1 L 20 30 40 50 60 FOCUS TO SKIN DISTANCE 70 80 (inches) Courtesy of Dr. J. R. Cameron, University Hospitals, University of Wisconsin EXPOSURE (mR/mAs) AT 40 INCHES 160 Courtesy of Dr. J. R. Cameron, University Hospitals, University of Wisconsin X-Ray Critical-Absorption and Emission Energies in kev By S. FINE and C. F. HENDEE Philips Laboratories Irvington on Hudson, New York Increased use of energy-proportional detectors for X-rays has created a need for a table of energy values of K and L absorption and emission series. The table presented here includes all elements. Most values were ob- tained by a conversion to kev of tabu- lated experimental wavelength values (1-3) ; some are from previous energy- value compilations (4, 3). Where a choice existed, the value chosen was the one derived from later work. Cer- tain values were determined by inter- polation, using Moseley’s law. (All this is annotated in footnotes.) The conversion equations relating energy and wavelength used are (6) E (kev) = (12.39644 ± 0.00017) /X(A) = 12.39644/1.002020 X(kX unit) In computing values the number of places retained sufficed to maintain the uncertainty in the original source value. The values in the table have been listed uniformly to 1 ev. However, chemical form may shift absorption edges as much as 10-20 ev (4, 5). To discover computational errors a fit was made to Moseley’s law. In general the values were consistent, however there were a few irregularities due to the deviation of some input values (1). These were retained in the body of the table but a set of values calculated to fit better are footnoted. * « * The authors wish to express their apprecia- tion to U". Parrish for helpful suggestions and to H. Kasper for performing the computation in connection with this work. BIBLIOGRAPHY 1. V. Cauchois, H. Hulubei, “Tables de Con- stantes et Donnees Numeriques. I. Longueurs D’Onde des Eraission.s X et des Discontinuites D'Absorption X” (Hermann et Cie. Paris France. 1947) 2. A. H. Compton and S. K. Allison, “X-rays in Theory and Experiment" (D. Van Nostrand Co., Inc., New York, 1951) 5. C. E. Moore, “Atomic Energy Levels,” NB9 467 (National Bureau of Standards, U. S. Department of Commerce, Washington, D. C., 1949) 4. Y. Cauchois, J. phya. radium 13, 113 (1952) 5. R. D. Hill, E. L. Church, and J. W. Mihelicb, Reo. Sci. Inalr. 23, 523 (1952) 6. J. W. M. DuMond, E. R. Cohen. Phya. Re*. 82. 555 (1951) X-Ray Critical-Absorption and Emission Energies in kev Atomic Num- ber Element K series L series Aab Kpi A/3 1 Kai Kai Llab Lllab Llllab Lyi L^i Lai Lot 1 Hydrogen 0.0136J 2 Helium 0.0246{ 3 Lithium 0.055 0.052 4 Beryllium 0.116§ 0.110 5 Boron 0.192t 0.185 6 Carbon 0.283 0.282 7 Nitrogen 0.399 0.392 8 Oxygen 0.531 0.523 9 Fluorine 0.687t 0.677 10 Neon 0.874* 0.851§ 0.048t 0.022t 0.022t 11 Sodium 1.08* 1.067 1.041 0.055§ 0.034§ 0.034§ 12 Magnesium 1.303 1.297 1.254 0.063 0.050 0.049 13 Aluminum 1.559 1.553 1.487 1.486 0.087 0.073** 0.072** 14 Silicon 1.838 1.832 1.740 1.739 0.118* 0.099** 0.098** 15 Phosphorus 2.142 2.136 2.015§ 2.014§ 0.153* 0.129§ 0.128§ 16 Sulphur 2.470 2.464 2.808 2.306 0.193* 0. 164** 0.163** 17 Chlorine 2.8191 2.815 2.622 2.621 0.238* 0.203§ 0.202§ 18 Argon 3.203 3.192§ 2.957 2.955 0.287* 0.247** 0.245** 19 Potassium 3.607 3.589 3.313 3.310 0.341* 0.297** 0.294** 20 Calcium 4.038 4.012 3.691 3.688 0.399* 0.352 0.349 0.344 0.341 21 Scandium 4.496 4.460 4.090 4.085 0.462* 0.411** 0.406** 0.399 0.395 22 Titanium 4.964 -4.931 4.510 4.504 0.530* 0.460** 0.454** 0.458 0.452 23 Vanadium 5.463 -5.427 4.952 4.944 0.604* 0.519** 0.512** 0.519 0.510 24 Chromium 5.988 -5.946 5.414 5.405 0.679* 0.583** 0.574** 0.581 0.571 25 Manganese 6.537 6.490 5.898 5.887 0.762* 0.650** 0.639** 0.647 0.636 26 Iron 7.111 7.057 6.403 6.390 0.849* 0.721** 0.708** 0.717 0.704 27 Cobalt 7.709 7.649 6.930 6.915 0.929* 0.794** 0.779** 0.790 0.775 28 Nickel 8.331 8.328 8.264 7.477 7.460 1.015* 0.871** 0.853** 0.866 0.849 29 Copper 8.980 8.976 8.904 8.047 8.027 1.100* 0.953 0.933 0.948 0.928 30 Zinc 9.660 9.657 9.571 8.638 8.615 1.200* 1.045 1.022 1.032 1 009 Copyrighted by McGraw-Hill (NUCLEONICS). Reproduced by U.S. Department of Ib-.i t-i, Education, and Welfare by permission of copyright holder. Further reproduction without permission of copyright holder is forbidden. K series L series Atomic Num- ber Element K.b K^2 KP, Kai Kar Lub Liub Liiub Lyi LPi LPi Lai La 2 31 Gallium 10.368 10.365 10.263 9.251 9.234 1.30* 1.134** 1.117** 1.122 1. 096 32 Germanium 11.103 11.100 10.981 9.885 9.854 1.42* 1.248** 1.217** 1.216 1. 186 33 Arsenic 11.863 11.863 11.725 10.543 10.507 1.529 1.359 1.323 1.317 1. 282 34 Selenium 12.652 12.651 12.495 11.221 11.181 1.652 1.473 1.434 1.419 1, 379 35 Bromine 13.475 13.465 13.290 11.923 11.877 1.794§ 1.599** 1.552** 1.526 1. 480 36 Krypton 14.323 14.313 14.112 12.648 12.597 1.931§ 1.727** 1.675** 1.638S 1. 587** 37 Rubidium 15.201 15.184 14. 960 13.394 13.335 2.067 1.866 1.806 1.752 1.694 1.692 38 Strontium 16.106 16.083 15.834 14.164 14. 097 2.221 2.008 1.941 1.872 1.806 1.805 39 Yttrium 17.037 17.011 16.736 14.957 14.882 2.369 2.154 2.079 1.996 1.922 1.920 40 Zirconium 17.998 17.969 17.666 15.774 15.690 2.547 2.305 2.220 2.302 2.219 2.124 2.042 2.040 41 Niobium 18.987 18.951 18.621 16.614 16.520 2.706 2.467** 2.374 2.462 2.367 2.257 2.166 2.163 42 Molybdenum 20.002 19.964 19. 607 17.478 17.373 2.884 2.627 2.523 2.623 2.518 2.395 2.293 2.290 43 Technetium 21.054§ 21.012§ -20.58511 18.410H 18.328H 3.054§ 2.795§ 2.677§ 2.792§ 2.674§ 2.538§ 2.424§ 2.420§ 44 Ruthenium 22.118 22.072 21.655 19.278 19.149 3.236§ 2.966 2.837 2.964 2.836 2.683 2.558 2.554 45 Rhodium 23.224 23.169 22.721 20.214 20.072 3.419 3. 145 3.002 3.144 3.001 2.834 2.696 2.692 46 Palladium 24.347 24.297 23.816 21.175 21.018 3.617 3.329 3. 172 3.328 3.172 2.990 2.838 2.833 47 Silver 25.617 25.454 24. 942 22.162 21.988 3.810 3.528 3.352 3.519 3.348 3. 151 2.984 2.978 48 Cadmium 26.712 26.641 26. 093 23.172 22. 982 4.019 3.727 3.538 3.716 3.528 3.316 3. 133 3.127 49 Indium 27.928 27. 859 27. 274 24. 207 24. 000 4.237 3.939 3.729 3.920 3.713 3.487 3.287 3.279 50 Tin 29. 190 29.106 28.483 25.270 25.042 4.464 4.157 3.928 4.131 3.904 3.662 3.444 3.435 51 Antimony 30.486 30.387 29.723 26. 357 26.109 4.697 4.381 4.132 4.347 4.100 3.843 3.605 3.595 62 Tellurium 31.809 31.698 30.993 27.471 27. 200 4.938 4.613 4.341 4.570 4.301 4.029 3.769 3.758 53 Iodine 33.164 33.016 32.292 28.610 28.315 5. 190 4.856 4.559 4.800 4.507 4.220 3.937 3.926 54 Xenon 34.579 34.44611 33. 644 29.80211 29.4851 5.452 5.104 4.782 5.036§ 4.720§ 4.422§ 4.111§ 4.098§ 55 Cesium 35.959 35.819 34.984 30.970 30.623 5.720 5.358 5.011 5.280 4.936 4.620 4.286 4.272 56 Barium 37.410 37.255 36.376 32.191 31.815 5.995 5.623 5.247 5.531 5.156 4,828 4.467 4.451 57 Lanthanum 38.931 38.728 37.799 33.440 33. 033 6.283 5.894 5.489 5.789 5.384 5.043 4.651 4.635 58 Cerium 40.449 40.231 39. 255 34.717 34.276 6.561 6. 165t 5.729 6.052 5.613 5.262 4.840 4.823 59 Praseodymium 41.998 41.772 40.746 36. 023 35.548 6.846 6.443 5.968 6.322 5.850 5.489 5.034 5.014 60 Neodymium 43.571 43.2981f 42 269 37.359 36.845 7.144 6.727 6.215 6.602 6.090 5.722 5.230 5.208 61 Promethium 45.207§ 44.955§ -43.945H 38.649H 38.160H 7.448§ 7.018§ 6.466§ 6.891§ 6.336§ 5.956 5.431 5.408§ 62 Samarium 46.846 46. 553 H 45.400 40. 124 39.523 7.754 7.2811; 6.721 7.180 6.587 6.206 5.636 5.609 63 Europium 48.515 48.241 47.027 41.529 40.877 8.069 7.624 6.983 7.478 6.842 6.456 5.846 5.816 64 Gadolinium 50.229 49.961 48.718 42.983 42.280 8.393 7.940 7.252 7.788 7.102 6.714 6.059 6.027 65 Terbium 51.998 51.737 50.391 44.470 43.737 8.724 8.258 7.519 8.104 7.368 6.979 6.275 6.241 66 Dysprosiuti 53.789 53.491 52.178 45.985 45.193 9.083 8.621H 7.8501 8.418 7.638 7.249 6.495 6.457 67 Holmium 55.615 55.292** 53. 934 § 47.528 46.686 9.411 8.920 8.074 8.748 7.912 7.528 6.720 6.680 68 Erbium 57.483 57. 088 55.690 49.099 48. 205 9.776 9.263 8.364 9.089 8.188 7.810 6.948 6.904 69 Thulium 59.335H 58.969** 57.5761[ 50.730 49.762 10. 144 9.628 8.652 9.424 8.472 8.103 7.181 7.135 70 Ytterbium 61.303 60. 959 59.352 52.360 51.326 10.486 9.977 8.943 9.779 8.758 8.401 7.414 7.367 71 Lutecium 63.304 62.946 61.282 54.063 52.959 10.867 10.345 9.241 10.142 9.048 8.708 7.654 7.604 72 Hafnium 65.313 64. 936 63.209 55.757 54.579 11.264 10.734 9.556 10.514 9.346 9.021 7.898 7.843 73 Tantalum 67.400 66.999 65.210 57. 524 56.270 11.676 11.130 9.876 10.892 9.649 9.341 8.145 8.087 74 Tungsten 69.508 69.090 67. 233 59.310 57.973 12.090 11.535 10.198 11.283 9.959 9.670 8.396 8.333 76 Rhenium 71.662 71.220 69.298 61.131 59.707 12.522 11.955 10.531 11.684 10.273 10.008 8.651 8.584 76 Osmium 73.860 73.393 71.404 62.991 61.477 12.965 12.383 10.869 12.094 10.596 10.354 8.910 8.840 77 Iridium 76.097 75.605 73.549 64. 886 63. 278 13.413 12.819 11.211 12.509 10.918 10.706 9.173 9.098 78 Platinum 78.379 77.866 75.736 66.820 65. Ill 13.873 13.268 11.559 12.939 11.249 11.069 9.441 9.360 79 Gold 80.713 80.165 77.968 68.794 66.980 14.353 13.733 11.919 13.379 11.582 11.439 9.711 9.625 80 Mercury 83.106 82.526 80.258 70.821 68.894 14.841 14.212 12.285 13.828 11.923 11.823 9.987 9.896 81 Thallium 85.517 84.904 82.558 72.860 70.820 15.346 14.697 12.657 14.288 12.268 12.210 10.266 10.170 82 Lead 88.001 87. 343 84.922 74.957 72.794 15.870 15.207 13.044 14.762 12.620 12.611 10.549 10.448 83 Bismuth 90.521 89.833 87.335 77. 097 74.805 16.393 15.716 13.424 15.244 12.977 13.021 10.836 10.729 84 Polonium 93.112 92.386 89.809 79.296 76.868 16.935 16.244 13.817 15.740 13.338 13.441 11.128 11.014 85 Astatine 95.740 94.976 92.319 81.525 78. 956 17.490 16.784 14.215 16.248 13.705 13.873 11.424 11.304 86 Radon 98.418 97.616 94.877 83.800 81. 080 18.058 17.387 14.618 16.768 14.077 14.316 11.724 11.597 87 Francium 101.147 100.305 97.483 86. 119 83.243 18.638 17.904 15.028 17.301 14.459 14.770 12.029 11.894 88 Radium 103.927 103.048 100. 136 88.485 85.446 19.233 18.481 15.442 17.845 14.839 15.233 12.338 12.194 89 Actinium 106.759 105.838 102.846 90.894 87.681 19.842 19.078 15.865 18.405 15.227 15.712 12.650 12.499 90 Thorium 109.630 108.671 105.592 93. 334 89.942 20.460 19.688 16.296 18.977 15.620 16.200 12.966 12.808 91 Protactinium 112.581 111.575 108.408 95.851 92.271 21.102 20.311 16.731 19.559 16.022 16.700 13.291 13.120 92 Uranium 115.591 114.549 111.289 98.428 94.648 21.753 20.943 17.163 20.163 16.425 17.218 13.613 13.438 93 Neptunium 118.619 117.533 114.181 101.005 97. 023 22.417 21.596 17.614 20.774 16.837 17.740 13.945 13.758 94 Plutonium 121.720 120.592 117.146 103.653 99.457 23.097 22.262 18.066 21.401 17.254 18.278 14.279 14. 082 95 Americium 124.876 123.706 120.163 106.351 101.932 23.793 22. 944 18.525 22.042 17.677 18.829 14.618 14.411 96 Curium 128.088 126.875 123.235 109.098 104.448 24.503 23.640 18.990 22.699 18.106 19.393 14.961 14.743 97 Berkelium 131.357 130.101 126.362 111.896 107. 023 25.230 24. 352 19.461 23. 370 18.540 19.971 15.309 15.079 98 Californium 134.683 133.383 129.544 114.745 109.603 25.971 25.080 19.938 24. 056 18.980 20.562 15.661 15.420 99 138.067 136.724 132.781 117.646 112.244 26.729 25. 824 20.422 24.758 19.426 21.166 16.018 15.764 100 141.510 140. 122 136.075 120.598 114.926 27.503 26.584 20.912 25.475 19.879 21.785 16.379 16.113 For Z < 69, values irithout symbols are derived from (I). Values prefixed with a — sign are Kfii+t. For Z > 70, absorption-edge values are from (4) in the case of Z » 70-83, 88, 90, and 92; remaining absorption edges to Z “ 100 are obtained from these by least-squares quadratic fitting. All emission values for Z >70 are derived from the preceding absorption edges, and others based on (4), using the transi- tion relations Xai iCab — ' ATaj ■» Kab — ^IT> «=• /Cab — Afm, etc. * Obtained from R. D. Hill, E. L. Church, J. W. Mihelich (5). t Derived from Compton and Allison (S). t Derived from C. E. Moore (S). ^ Values derived from Cauchois and Hulubei (/) which deviate from the Moseley law. Better-fitting values are: Z “ 17, Xab = 2.826; Z ■= 43, Kai - 18.370, Kat -= 18.250, K0i •= 20.612; Z = 54, Kai = 29.779, Ka, -= 29.463, K0, = 34.398; Z = 60, K6t = 43.349; Z = 61, Kai = 38.726, Ka, - 38.180, Kfii = 43.811; Z - 62. K0t ■= 46.581, Lu -= 7.312; Z ■ 66, Lxi •= 8.591, Lni ” 7.790; Z = 69, /Tab " 59.382, K0i ■= 57.487. 162 ^ Calculated by method of least squares. •* Calculated by transition relations. HALF VALUE LAYER I CM) o 164 (A3)l)AO»3N3 NOiOHd HALF VALUE LAYER (MM) MEDICAL X RAY FILM SPEEDS* Film (Screen Films) Slow Screen (Radelin UD) Medium Screen (Patterson Par-Speed) Fast Screen (Ilford Fast) Contrast Factort Ansco Fine-X 350 890 1570 2.6 Ansco Hi-Speed 400 1000 1780 2.4 Dupont Cronex I 280 700 1230 3.0 Dupont Cronex II 360 910 1600 3.4 Dupont Cronex III 560 1430 2520 2.9 Ferrania Radio N 350 880 1560 2.7 Gevaert Curix 260 670 1190 2.6 Gevaert Curix Rapid 470 1190 2110 2.8 Gevaert Curix Spec. 180 460 820 2.6 Ilford Red Seal 350 880 1550 2.7 Ilford Standard 220 560 1000 2.8 Kodak Blue Brand 320 820 1460 2.8 Kodak Royal Blue 610 1550 2740 3.0 (Non-Screen Films) Without Screen Contrast F actor Ansco No Screen 47 2.2 Ferrania Simplex 25 2.0 Gevaert Osray 46 2.2 Ilford Ilfex 39 2.5 Kodak No Screen 51 2.5 *Speed = 1/R, where R is the exposure in roentgens required to obtain a film density of 1.0 under specified development conditions. Film exposed with x-ray beam of 4 mm A1 HVL and developed 3 minutes in Kodak Liquid Developer at 20° C. tThe slope of the H & D curve (plot of film density vs. log exposure) at a film density of 1.0. The contrast factor is generally independent of screen type and HVL of exposing beam except when film is used without screens. The information on pages 165 through 167 is taken from "Some Physical Fai tors Affecting Radiographic Image Quality: Their Theoretical Basis and Measurement by Lloyd M. Bates (PHS Publication No. 999-RH-38) August 1969. 373-062 0 - 70-12 MEDICAL X RAY SCREEN SPEEDS* Screen Slow Film (Gevaert Curix Spec.) Medium Film (Kodak Blue Brand) Fast Film (Kodak Royal Blue) Ansco High Speed 610 1080 2040 Ansco Medium Speed 490 880 1660 Auer Flash-speed 730 1300 2440 Buck A 440 780 1480 Buck AA 550 990 1860 Buck AAA 610 1090 2050 Ilford Fast 820 1460 2740 Ilford Standard 420 760 1430 Patterson Detail 280 500 930 Patterson Hi-speed 680 1220 2300 Patterson Par-speed 460 820 1550 Radelin HR 230 410 780 Radelin T 440 790 1480 Radelin TF 720 1290 2440 Radelin UD 180 320 610 Wolf Rapid 490 870 1640 Wolf Ultra 560 1000 1880 Without screent 6 13 22 *Speed = 1/R, where R is the exposure in roentgens required to ob- tain a film density of 1.0 under specified development conditions. Films exposed with x-ray beam of 4 mm A1 HVL and developed 3 minutes in Kodak Liquid Developer at 20° C. tScreen-type film used. VARIATION OF MEDICAL X RAY FILM SPEED WITH HVL* Screen Film HVL 2 mm A1 4 mm A1 6 mm A1 Slow Medium 260 320 370 (Radelin UD) (Kodak Blue Brand) Medium Medium 630 820 940 (Patterson (Kodak Blue Brand) Par-speed) Fast Medium 980 1460 1770 (Ilford Fast) (Kodak Blue Brand) None Medium 11 13 13 (Kodak Blue Brand) None Fast 42 51 58 (Kodak No Screen) *Speed = 1/R, where R is the exposure in roentgens required to ob- tain a film density of 1.0 under specified development conditions. Films developed 3 minutes in Kodak Liquid Developer at 20° C. PERCENTAGE BACKSCATTER TABLES X-ray exposure is measured in air at a given distance from the x-ray tube. When a beam of x rays is incident on a patient or other object, the exposure rate at the surface will be increased by x rays scattered back to the detec- tor by the patient or the tabletop. The percentage backscatter is a measure of the increase in exposure rate and is defined as the increase in exposure rate at the surface of the patient compared to the exposure rate at the same point in air: X “X Percentage Backscatter = — x 100 where: Xg = exposure rate at the surface Xg = exposure rate at the same distance in air. The following tables give percentage backscatter for circular and rectangu- lar fields of various sizes and at various HVL ' s with open-ended treatment cones. (a) Circular Fields Half Value Area Layer an'^ ]0 16 20 25 35 50 64 80 100 150 200 300 400 radius inm A1 cm 1.78 2.26 2.52 2.82 3.34 3.99 4.51 5.05 5.64 6.77 7.98 9.75 11.3 1.0 10.8 12.8 13.8 14.8 16.4 17.9 18.9 19.7 20.5 21.8 22.9 2.0 11.8 14.3 15.4 16.8 19.0 21.1 22.5 23.8 25.0 26.6 27.9 3.0 13.4 16.4 17.9 19.4 21.7 24.0 25.6 27.0 28.3 30.2 31.8 4.0 14.1 17.4 19.0 20.8 23.6 26.5 28.3 29.9 31.4 33.4 35.0 mm Cu 0.25 17.4 20.5 22.0 23.7 26.3 29.2 31.2 33.0 34.8 37.4 39.5 42.4 45.0 0.5 18.6 22.0 23.5 25.4 28.2 31.4 33.6 35.7 37.6 40.6 43.0 46.3 49.2 1.0 15.0 18.4 20.0 22.1 25.2 28.8 31.4 33.8 36.0 39.3 42.0 45.8 49.0 1.5 13.8 16.9 18.4 20.1 23.0 26.2 28.4 30.6 32.7 36.1 39.1 42.8 46.0 2.0 11.9 14.5 16.0 17.6 20.1 23.0 25.0 26.9 28.8 32.0 34.8 38.5 41.8 3.0 9.8 12.0 13.0 14.4 16.4 18.8 20.5 22.2 23.8 26.6 28.9 31.6 34.0 4.0 7.6 9.4 10.4 11.4 13.2 15.2 16.8 18.2 19.7 22.0 24.0 26.4 28.0 (b) Rectangular Fields CM X CM Half Value Layer Field Size (cm X cm) mm Cu 4X4 4X6 4X8 i IXIO 4X15 4X20 6X6 6X8 6X10 6X15 6X20 0.5 21.4 24.4 26.1 27.2 28.5 29.2 28.3 30.6 32.1 34.0 35.0 1.0 18.0 21.1 23.0 24.3 25.8 26.6 25.2 27.9 29.7 31.8 33.0 1.5 16.6 19.3 21.0 22.2 23.7 24.5 23.0 25.3 26.9 29.1 30.3 2.0 14.4 16.9 18.4 19.4 20.8 21.6 20.1 22.2 23.7 25.7 26.9 3.0 11.6 13.7 14.9 15.8 17.0 17.6 16.4 18.2 19.4 21.1 22.1 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 0.5 33.4 35.2 37.6 39.0 37.3 40.1 41.8 43.9 46.2 48.9 1.0 31.1 33.3 36.0 37.5 55.7 38.9 40.7 43.0 45.6 48.7 1.5 28.2 30.2 33.0 34.5 32.4 35.7 37.6 40.0 42.6 45.7 2.0 24.8 26.5 29.2 30.7 2;;.6 31.7 33.5 35.8 38.4 41.5 3.0 20.4 21.9 24.1 25.3 23.7 26.2 27.7 29.6 31.5 33.7 168 Tables reprinted from: Johns, H. E., The Physics of Radiology, 2nd Ed., 1964 DEPTH DOSE TABLES "Percentage depth dose" is the ratio of radiation dose at some depth below the surface of the patient or phantom (D^) to the dose at the face (D^ ) : Percentage Depth Dose - Ed. Ds X 100. (d) sur- At high energies the surface. In of absorbed dose (e.g., ®°Co), the maximum dose occurs at some point below this case the percentage depth dose is defined as the ratio at some depth d (D^j ) to the maximum dose (D^) : Percentage Depth Dose - “ X 100. l-'-m The following tables give percentage depth doses for various field sizes and exposure parameters. I IVL 1 .0 MM Al. (Approximately 70 kvp With Inherent 1 iltration) A rca (cm‘2') 0 3.1 7.0 12.5 2S.3 50 100 Diam. {cm) 0 2 3 4 6 8 11.3 Depth (cm) 0 100 100 100 100 100 100 100 0.5 61 74 79 81 84 86 87 1 42 56 61 63 66 67 69 FSD 2 23 32 36 39 41 42 44 15 cm 3 13 19 22 24 26 27 29 4 8 12 13 15 17 19 20 8 2 2 3 3 4 4 5 0 100 100 100 100 100 100 100 0.5 62 75 80 82 84 86 88 1 44 58 63 65 67 68 70 FSD 2 24 34 38 41 43 44 45 20 cm 3 14 20 23 25 28 29 31 4 9 13 15 16 18 20 21 8 2 3 3 4 4 5 6 0 100 100 100 100 100 100 100 0.5 63 76 81 83 85 88 89 1 45 60 64 66 68 70 71 FSD 2 25 36 40 42 44 46 48 30 cm 3 16 22 25 27 30 31 33 4 10 14 16 18 20 22 23 8 2 3 4 4 5 6 7 HVL2.0MM Al. (Approximately 120 kvp With Inherent Filtration) 0 100 100 100 100 100 100 100 0.5 71 82 85 87 88 89 90 1 52 65 69 72 74 76 77 FSD 2 31 42 47 49 53 55 56 15 cm 3 20 28 32 34 38 40 42 4 14 19 22 24 27 30 32 8 3 5 6 7 9 10 11 0 100 100 100 100 100 100 100 0.5 72 83 86 88 89 90 91 1 54 66 71 73 76 77 78 FSD 2 33 44 49 51 55 57 58 20 cm 3 22 30 34 36 40 42 44 4 15 21 24 26 30 32 34 8 4 6 7 8 10 11 13 0 100 100 100 100 100 100 100 0.5 73 84 87 88 89 91 92 1 55 68 73 74 77 79 80 FSD 2 35 47 51 54 57 60 61 30 cm 3 24 33 37 39 43 45 47 4 17 23 27 29 32 35 37 8 5 7 8 9 11 13 15 Tables reprinted from; Johns, H. E., The Physics of Radiology, 2nd Ed., 1964. DEPTH DOSE--Continued HVL 3.0 MM Al. (Approximately 120 kvp 1 mm Al. Filter) Area (cm2) 0 3.1 7.0 72,5 28.3 50 100 Diam. (cm) 0 2 3 4 6 8 113 Depth (cm) 0 100 100 100 100 100 100 100 0.5 lb 85 87 88 ■89 90 90 1 58 70 74 76 77 78 80 FSD 2 37 48 53 56 59 60 62 15 cm 3 24 33 37 41 45 46 48 4 17 23 27 30 34 35 37 8 4 6 8 9 11 13 14 0 100 100 100 100 100 100 100 0.5 76 86 88 89 90 91 91 1 60 72 lb 77 79 80 81 FSD 2 39 51 55 58 62 63 65 20 cm 3 27 35 40 43 47 49 51 4 19 25 29 32 36 38 40 8 5 7 9 10 12 14 16 0 100 100 100 100 100 100 100 0.5 77 86 88 90 91 92 92 1 62 74 77 79 81 82 83 FSD 2 41 54 58 61 65 66 67 30 cm 3 29 39 43 46 51 53 55 4 21 28 32 35 40 42 44 8 6 9 10 12 14 17 19 HVL 4.0 mm Al. (Approximatei.y 140 kvp 2.0 mm Al. Filter) 0 100 100 100 100 100 100 100 0.5 78 87 89 90 91 92 93 1 62 74 77 79 80 81 84 FSD 2 40 52 56 59 62 63 67 15 cm 3 27 37 41 44 47 49 53 4 19 26 30 32 36 38 42 8 5 8 9 10 12 14 17 0 100 100 100 100 100 100 100 0.5 79 88 89 90 92 93 94 1 63 76 78 80 82 83 86 FSD 2 43 55 59 62 64 66 70 20 cm 3 30 40 44 46 49 52 56 4 21 29 32 35 38 41 45 8 6 9 10 12 14 16 19 0 100 100 100 100 100 100 100 0.5 80 90 91 92 93 94 95 1 65 78 81 82 83 84 87 FSD 2 45 58 62 65 68 69 73 30 cm 3 32 43 47 50 54 56 60 4 24 32 36 38 42 45 49 8 7 11 12 14 17 19 22 170 DEPTH DOSE --Continued HVLO.SmmCu FSD40CM Depth Area of I'ield in Square Centiinetres in cni 0 20 35 50 0 100.0 100.0 100.0 100.0 1 74.6 91.7 93.6 94.7 2 56.5 78.1 81.5 83.4 3 43.2 64.8 68.9 71.6 4 33.3 52.9 bin 60.5 5 25.8 43.3 47.8 50.9 6 20.0 35.4 39.3 42.4 7 15.5 28.9 32.6 35.6 8 12.1 23.7 27.1 29.5 9 9.4 19.4 22.3 24.7 10 7.4 16.1 18.4 20.5 II 5.8 13.2 15.3 17.0 12 4.6 10.8 12.8 14.3 13 3.7 8.8 10.7 12.0 14 2.9 7.3 8.9 10.0 15 2,4 6.0 7,4 8.3 16 1.9 4.9 6,1 6.9 17 1.5 4.1 5.1 5.8 18 1.2 3.4 4.2 4.8 19 1.0 2.8 3.5 4.0 20 .8 2.3 2.9 3.4 80 100 150 2(!0 400 100.0 100.0 100.0 I'lO () 100.0 96.4 97.0 98.0 98.6 99.3 86.0 86.9 88.8 89.9 91.9 74.6 76.0 78.4 80.0 83.4 64.2 65.6 68.1 69.7 73.9 54.6 56.2 59.0 61.0 65.1 46.0 47.5 50.5 52.8 57.0 38.8 40.1 43.2 45.4 49.8 32.5 34.0 36.8 39.0 43.5 27.3 28.7 31.4 33.4 37.5 23.0 24.3 26.6 28.5 32.7 19.3 20.5 22.5 24.3 28.2 16.3 17.4 19.2 20.8 24.5 13.7 14.7 16.3 17.6 21.1 11.5 12.3 13.9 15.3 18.3 9.7 10.4 11.8 13.0 15.7 8.2 8.8 10.1 11. 1 13.6 6.9 7.4 8.6 9.6 11.7 5.8 6.3 7.3 8.2 10.1 4.9 5.3 6.2 7.0 8.7 4.1 4.5 5.3 5.9 7.5 HVL 0.5 MM Cu FSD 50 cm Depth Area of Field in Square Centimetres in cm 0 20 35 50 0 100.0 100.0 100.0 100.0 1 75.3 92.3 94.3 95.4 2 55.7 79.0 82.5 84.4 3 44.5 66.0 70.2 72.9 4 34.5 54.3 59.2 62.1 5 27.0 44.7 49.3 52.5 6 21.1 36.7 40.8 44.0 7 16.5 30.1 34.0 37.1 8 13.0 24.8 28.3 30.8 9 10.1 20.4 23.4 25.9 10 8.0 16.9 19.4 21.6 11 6.3 13.9 16.2 18.0 12 5.1 11.4 13.5 15.1 13 4.1 9.4 11.3 12.7 14 3.3 in 9.4 10.6 15 2.6 6.4 7.8 8.8 16 2.1 5.3 6.5 7.4 17 1.7 4.3 5.4 6.2 18 1.4 3.6 4.5 5.2 19 1.1 3.0 3.8 4.3 20 .9 2.4 3.1 3.6 80 100 150 200 400 100.0 100.0 100.0 100.0 100.0 97.1 97.7 98.7 99.3 100.0 87.0 88.0 89.9 91.0 93.0 76.0 77.4 79.8 81.5 84.9 65.9 67.3 69.9 71.6 75.9 56.3 58.0 60.9 62.9 612 Ain 49.3 52.4 54.8 59.1 40.4 41.8 45.0 47.3 51.9 34.0 355 38.5 40.8 45.2 28.6 30.1 32.9 35.0 39.4 24.2 25.6 28.0 30.0 34.4 20.4 21.6 23.8 25.7 29.8 17.2 18.4 20.3 22.0 25.9 14.5 15.6 17.3 18.7 22.4 12.2 13.1 14.8 16.2 19.4 10.3 11.1 12.6 13.8 16.7 8.7 9.4 10.8 11.8 14.5 7.3 7.9 92 10.2 125 6.2 6.7 7.8 8.7 10.8 5.2 5.7 6.6 15 9.3 4.4 4.8 5.6 6.4 8.1 1 - 1 DEPTH DOSE --Continued HVL 1.0 MM Cu I Sl ) -10 CM Depth A rea of Field in Square Centimetres in cm 0 20 75 50 SO 100 150 200 ■100 0 100,0 100.0 100.0 100.0 100.0 100 0 100.0 100.0 loo.o 1 78.3 93.5 96.2 9V.5 99.2 100. i 101.3 101,9 102.3 2 61.7 82.1 87.2 89.0 92.0 93.0 91.7 95.6 97.1 3 49.0 71.1 75.9 79.0 83.1 84.7 87.1 88.9 91.4 4 39.0 60.5 65.5 68.8 73.2 75.2 78.2 80.3 84.2 5 31.1 50.9 55.8 59.3 63.9 65.6 69.1 71.3 75.5 6 25.0 42.8 47.4 50.7 55.1 57.1 60.3 62.6 67 A 7 20.0 35.8 40.1 43.2 47.4 49.3 52.7 55.1 59.9 8 16.1 29.8 33.7 36.5 40.5 42.6 45.7 48.1 53.1 9 13.0 24.9 28.5 31.0 34.7 36.7 39.9 41.9 46.9 10 10.4 20.8 24.9 26.4 29.6 31.4 34.4 36.4 41.5 11 8.4 17.4 20.3 22.4 25.3 27.0 29.6 31.6 36.4 12 6.7 14.6 17.1 19.0 21.5 23.1 25.6 27.5 31.8 13 5.4 12.2 14.4 16.0 18.4 19.7 22.0 23.9 27.8 14 4.4 10.2 12.2 13.6 15.7 16.9 19.0 20.7 24.3 15 3.5 8.5 10.2 11.5 13.5 14.5 16.3 17.8 21.3 16 2.8 7.1 8.6 9.7 11.5 12.4 14.0 15.4 18.6 17 2.3 6.0 7.2 8.3 9.8 10.6 12.1 13.3 16.3 18 1.9 5.0 6.1 7.0 8.3 9.0 10.4 11.5 14.3 19 1.5 4.2 5.2 5.9 7.1 7.8 8.9 9.9 12.5 20 1.2 3.5 4.4 5.0 6.1 6.7 7.7 8.5 10.9 HVL I.O MM Cu FSD 50 cm Depth Area of Field in Square Centimetres in cm 0 20 35 50 80 100 150 200 400 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 79.0 94.2 96.9 98.2 99.9 100.8 102.0 102.6 103.0 2 63.0 83.2 88.3 90.2 93.2 94.2 95.9 96.9 98.4 3 50.5 72.5 77.4 80.5 84.7 86.3 88.8 90.6 93.5 4 40,5 62.0 67.2 70.6 75.1 77.1 80.2 82.4 86.4 5 32.5 52.5 57.5 61.1 65.9 67.6 71.2 73.5 77.8 6 26.3 44.4 49.1 52.5 57.1 59.2 62.5 64.9 69.8 7 21.3 37.3 41.8 45.0 49.4 51.4 54.8 57.3 62.3 8 17.3 31.2 35.2 38.2 42.4 44.6 47.8 50.3 55.5 9 14.0 26.1 29.9 32.5 36.4 38.5 41.8 43.9 49.3 10 11.3 21.9 25.2 27.8 31.2 33.1 36.2 38.3 43.6 11 9.1 18.3 21.4 23.7 26.7 28.5 31.3 33.4 38.5 12 lA 15.4 18.2 20.1 22.8 24.4 27.1 29.1 33.8 13 5.9 12.9 15.3 17.0 19.5 20.9 23.4 25.3 29.5 14 4.8 10.8 13.0 14.4 16.7 17.9 20.2 21.9 25.8 15 3.9 9.1 10.8 12.2 14.3 15.4 17.4 18.9 22.7 16 3.2 7.6 9.1 10.3 12.2 13.2 14.9 16.4 19.8 17 2.6 6.4 7.7 8.8 10.4 11.3 12.9 14.2 17.3 18 2.1 5.3 6.5 7.4 8.9 9.6 11.1 12.3 15.2 19 1.7 4.5 5.5 6.3 7.6 8.3 9.5 10.6 13.3 20 1.4 3.7 4.7 5.4 6.5 7.1 8.2 9.1 11.6 172 DEPTH DOSE--Continued HVLI.OmmCu ISD60CM Depth Area of Held in Square Centimetres in cm 0 20 35 50 SO 100 150 200 WO 0 100.0 100.0 KKl.O 100.0 100.0 100.0 loo.o 100.0 100.0 1 79.6 94.8 97.5 98.8 100.5 101.4 102.6 103.2 103.6 2 63.8 84.2 89.4 91.3 94.3 95.3 97.1 98.1 99.6 3 51.5 73.8 78.8 81.9 86.2 87.9 90.4 92.2 95.2 4 41.5 63.4 68.7 72.2 76.8 78.9 82.0 84.3 88.4 5 33.5 54.0 59.0 62.7 67.6 69.4 73.0 75.3 79.7 6 27.4 4.5.6 50.5 54.0 58.7 60.9 64.3 66.7 71.8 7 22.2 38.5 43.0 46.4 50.9 53.0 56.5 59.1 64.2 8 18.1 32.2 36.4 39.5 43.8 46.1 49.5 52.0 57.3 9 14.6 27.0 30.9 33.6 37.7 39.8 43.2 45.4 51.0 10 11.8 22.7 26.2 28.8 32.4 34.3 37.5 39.7 45.2 II 9.7 19.0 22.2 24.6 Tin 29.6 32.5 34.7 40.0 12 7.8 16.0 18.8 20.8 23.7 25.4 28.2 30.3 35.2 13 6.4 13.4 15.9 17.7 20.3 21.8 24.4 26.4 30.8 14 5.2 11.3 13.5 15.0 ■17.4 18.7 21.0 22.9 27.0 15 4.2 9.5 11.3 Yin 15.0 16.1 18.1 19.8 23.7 16 3.4 8.0 9.6 10.7 12.8 13.8 15.6 17.2 20.8 17 2.8 6.7 8.1 9.2 10.9 11.9 13.5 14.9 18.2 18 2.3 5.6 6.9 7.8 9.3 10.1 11.7 12.8 15.9 19 1.9 4.7 5.8 6.6 8.0 8.7 10.0 11.2 14.0 20 1.6 3.9 4.9 5.6 6.8 7.5 8.6 9.6 12.2 HVLI.OmmCu FSDSOcm Depth Area of Field in Square Centimetres in cm 0 20 35 50 80 100 150 200 100 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 80.4 95.3 98.1 99.4 101.1 102.0 103.2 103.8 104.2 2 64.9 85.4 90.6 92.5 95.5 96.6 98.3 99.3 100.9 3 52.6 75.3 80.3 83.4 87.7 89.4 91.9 93.8 96.8 4 42.7 65.0 70.4 73.8 78.6 80.6 83.8 86.1 90.3 5 34.8 55.4 60.7 64.4 69.5 71.3 75.0 77.4 81.9 6 28.6 47.2 52.2 55.8 60.7 62.9 66.4 68.9 74.1 7 23.4 40.0 44.7 48.2 52.9 54.9 58.6 61.3 66.6 8 19.2 33.6 38.1 41.1 45.6 47.9 51.4 54.0 59.6 9 15.7 28.3 32.4 35.2 39.5 41.6 45.1 47.5 53.2 10 12.9 23.9 27.b 30.3 34.0 36.0 39.4 41.6 47.3 11 10.5 20.1 23.4 25.9 29.2 31.1 34.2 36.5 42.0 12 8.6 17.0 19.8 22.1 25.1 26.8 29.7 31.9 37.0 13 7.0 14.3 16.8 18.8 21.5 23.0 25.7 27.8 32.4 14 5.7 12.0 14.3 16.0 18.4 19.8 22.3 24.2 28.5 15 4.7 10.1 12.1 13.6 15.8 17.1 10.3 21.0 25.2 16 3.9 8.5 10.2 11.5 13.6 14.7 16.6 18.3 22.1 17 3.2 7.2 8.7 9.8 11.7 12.6 14.4 15.9 19.4 18 2.6 6.0 7.4 8.4 10.0 10.8 12.5 13.8 17.0 19 2.2 5.1 6.2 7.1 8.6 9.3 10.7 11.9 14.9 20 1.8 4.2 5.3 6.1 7.4 8.0 9.3 10.4 13.1 1, 1 DEPTH DOSE--Continued HVL1.5mmCu rSD40cM Dejil It Area of Field in Sf/iiare Ceriiimetres in cm 0 20 33 30 0 100.0 100.0 100,0 100.0 1 80.1 91,3 96.3 9H.0 2 63.9 83.8 87.4 89.3 3 51.2 12A 76.9 79.8 4 41.5 61.7 66.5 69.6 5 33.5 52.3 57.0 60.4 6 27.0 44.3 48.6 52.0 7 21.8 37 A 41.8 44.7 8 17.6 31.5 35.4 38.2 9 14.2 26.4 30.0 32.6 10 11.4 22.2 25.5 27.9 11 9.3 18.7 21.6 23.7 12 7.5 15.8 18.4 20.3 13 6.1 13.2 15.6 17.3 14 5.0 11.1 13.2 14.8 15 4.1 9.4 11.2 12:6 16 3.3 7.9 9.6 10.8 17 2.7 6.7 8.1 9.2 18 2.2 5.6 6.9 7.9 19 1.8 4.8 5.9 6.8 20 1.5 4.0 5.0 5.8 SO JOO no 200 ■100 1(I!M» 100 0 loo 0 1 o() 0 lOil.O 98,9 90.7 1( H ).7 lo : .9 H )2 ,0 92.0 9; t.o 94.8 95.9 98.0 83.3 85.1 87.6 89.2 92.3 74.0 76.0 78.9 80.8 84.7 64.8 66.7 70.0 72.1 76.6 56.4 58.9 62.1 64.4 69.2 49.1 51.3 54.4 56.9 62.3 42.7 44.4 47.6 50.0 55.8 36.8 38.3 41.7 44.0 49.6 31.5 33.2 36.4 38.3 44.0 27.1 28.5 31.5 33.4 38.7 23.3 24.6 27.4 29.2 .34.1 20.0 21.3 23.8 25.4 30.1 17.2 18.4 20.7 22.3 26.3 14.8 15.8 17.9 19.5 23.2 12.7 13.6 15.6 17.0 20.3 11.0 11.8 13.6 14.9 17.9 9.5 10.2 11.9 13.1 15.7 8.1 8.8 10.3 11.5 13.8 7.0 7.6 8.9 10.1 12.1 HVL1.5mmCu FSD50CM Depth Area of Field in Square Centimetres in cm 0 20 33 30 0 100.0 100.0 100.0 100.0 1 80.8 95.0 97.0 98.0 2 65.2 84.9 88.6 90.5 3 52.7 73.9 78.5 81.4 4 43.0 63.3 68.3 71.5 5 35.0 53.9 58.8 62.3 6 28.4 45.9 50.3 53.8 7 23.2 38.9 43.4 46.4 8 18.8 32.8 36.9 39.8 9 15.3 27.6 31.4 34.1 10 12.4 23.3 26.8 29.3 11 10.2 19.7 22.8 25.0 12 8.3 16.7 19.4 21.4 13 6.7 14.0 16.5 18.3 14 5.5 11.8 14.0 15.7 15 4.5 10.0 11.9 13.4 16 3.7 8.4 10.2 11.5 17 3.1 7.1 8.7 9.8 18 2.5 6.0 7.4 8.4 19 2.1 5.1 6.3 7.2 20 1.7 4.3 5.3 6.2 80 100 130 200 100 100.0 100.0 100.0 100.0 100.0 99.6 100.4 101.5 102.2 102.7 93.2 94.2 96.0 97.2 99.3 85.0 86.8 89.4 91.0 94.2 76.0 78.0 81.0 83.0 87.0 66.8 68.8 72.1 74.3 79.0 58.4 61.0 64.3 66.7 71.6 51.0 53.3 56.5 59.1 64.7 44.5 46.3 49.6 52.1 58.2 38.5 40.1 43.6 46.0 51.9 33.1 34.8 38.2 40.2 46.2 28.6 30.0 33.2 35.2 40.8 24.6 26.0 28.9 30.8 36.0 21.2 22.5 25.2 26.9 31.8 18.2 19.5 21.9 23.6 27.9 15.7 16.8 19.0 20.7 24.6 13.5 14.5 16.6 18.1 21.6 11.7 12.5 14.4 15.8 19.0 10.1 10.8 12.6 13.9 16.7 8.6 9.4 10.9 12.2 14.7 7.4 8.1 9.5 10.7 12.9 DEPTH DOSE--Continued HVL1.5mmCu FSD60CM DejUh A rea of Field in Square Centimetres 1 cm 0 20 J5 50 80 ino 150 200 400 0 100.0 100.0 100.0 100.0 100.0 100.0 100 0 KJOO 100.0 1 81.4 95.6 97.6 98.6 100.2 101.0 102.1 102.8 103 .3 2 66.0 85.8 89.6 91.5 94.2 95.2 97.1 98.3 100.4 .3 .5.3.7 75.0 79.7 82.6 86.3 88.1 90.7 92.4 95.6 4 44.0 64.6 69.7 72.9 77.5 79.6 82.6 84.7 88.7 .5 36.1 55.2 60.2 63.8 68.4 70.5 73.8 76.1 80.9 6 29.4 47.1 51.7 55.3 60.0 62.6 66.0 68.5 73.5 7 24.2 40.1 44.7 47.8 52.5 54.9 58.2 60.9 66.6 8 19.7 33.8 38.1 41.1 45.9 47.8 51.2 53.8 60.1 9 16.1 28.6 32.5 35.3 39.8 41.5 45.1 47.6 53J 10 13.1 24.2 27.8 30.4 34.3 36.1 39.6 41.7 47.9 1 1 10.8 20.5 23.7 26.0 29.7 31.2 34.5 36.6 42.4 12 8.8 17.4 20.2 22.3 25.6 27.0 30.1 32.0 37.4 13 7.2 14.6 17.2 19.1 22.1 23.4 26.3 28.0 33.1 14 5.9 12.3 14.6 16.4 19.0 20.4 22.9 24.6 29.1 15 4.9 10.5 12.4 14.0 16.4 17.5 19.9 21.6 25.7 16 4.0 8.8 10.7 12.0 14.1 15.2 17.4 19.0 22.6 17 3.4 7.5 9.1 10.3 12.3 13.1 15.1 16.6 19.9 18 2.8 6.3 7.7 8.8 10.6 11.3 13.2 14.6 17.5 19 2.3 5.3 6.6 7.6 9.1 9.8 11.5 12.8 15.4 20 1.9 4.5 5.6 6.5 7.8 8.5 10.0 11.3 13.6 HVL 1.5 MM Cu FSD 80 cm Depth Area of Field in Square Centimetres in cm 0 20 35 50 80 100 150 200 400 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 82.3 96.3 98.3 99.3 100.9 101.7 102.7 103.4 103.8 2 67.2 87.1 90.9 92.8 95.4 96.4 98.1 99.3 101.5 3 54.9 76.7 81.4 84.3 88.0 89.8 92.4 94.0 97.2 4 45.4 66.4 71.5 74.9 79.4 81.4 84.6 86.6 90.7 5 37.5 57.0 62.1 65.7 70.5 72.5 75.0 78.2 83.0 6 30.8 48.9 53.6 57.2 62.1 64.8 68.2 70.8 75.8 7 25.5 41.7 46.5 49.7 54.6 57.0 60.4 63.1 69.1 8 20.9 35.4 39.8 42.9 47.9 49.8 53.3 56.0 62.5 9 17.2 29.9 34.1 36.9 41.7 43.3 47.1 49.7 56.0 10 14.1 25.4 29.2 31.9 36.0 37.8 41.5 43.7 50.1 11 11.8 21.6 25.0 27.3 31.3 32.7 36.2 38.4 44.5 12 9.6 18.4 21.3 23.5 27.0 28.5 31.6 33.7 39.4 13 7.9 15.5 18.2 20.2 23.3 24.8 27.7 29.6 34.9 14 6.6 13.1 15.5 17.4 20.1 21.5 242 26.0 30.7 15 5.4 11.2 13.2 14.9 17.4 18.6 21.0 22.9 27.2 16 4.5 9.5 11.4 12.8 15.0 16.1 18.4 20.1 24.0 17 3.7 8.0 9.7 11.0 13.1 14.0 16.1 17.6 21.1 18 3.1 6.8 8.3 9.4 11.3 12.1 14.1 15.6 18.7 19 2.6 5.7 7.1 8.1 9.7 10.5 12.3 13.7 16.5 20 2.2 4.9 6.0 7.0 8.4 9.1 10.7 12.1 \45 17 DEPTH DOSE - -Cont inued HVL 2.0 MM Cu r.SD 50 cm Depth A rea of Field in Square Centimetres in cm 0 20 75 50 SO 100 no 200 ■too 0 100.0 100.0 100.0 100.0 100.0 100.0 100 0 100.0 100.0 1 81.4 95.0 96.9 97.9 99.4 99.9 101.0 101.6 102.4 2 66.5 85.5 88.5 90.3 92.7 93.8 95.4 96.6 99.0 3 54.0 74.3 78.6 81.3 84.8 86.3 88.8 90.5 93.7 4 44.2 63.9 68.7 71.8 75.8 77.6 80.7 82.8 87.0 5 36.2 54.9 59.5 62.8 67.0 68.8 71.9 74.2 19.2 6 29.6 46.5 51.2 54.5 58.8 61.0 64.2 66.5 71.8 7 24.3 39.6 44.0 47.2 51.5 53.4 57.0 59.2 64.8 8 19.9 33.5 37.7 40.8 44.8 46.8 50.3 52.7 58.5 9 16.4 28.4 32.4 35.2 39.2 40.9 44.4 46.5 52.4 10 13.4 24.0 27.7 30.3 33.9 35.7 38.9 41.3 46.7 11 11.1 20.4 23.7 26.0 29.4 31.0 34.0 36.3 41.6 12 9.1 17.2 20.2 22.3 25.4 27.0 29.7 31.8 36.9 13 7.5 14.7 17.3 19.2 21.9 23.4 26.0 28.0 32.7 14 6.2 12.5 14.8 16.5 19.0 20.3 22.8 24.7 28.9 15 5.1 10.6 12.6 14.1 16.4 17.7 19.9 21.7 25.5 16 4.2 8.9 10.8 12.1 14.2 15.3 17.4 19.1 22.6 17 3.5 7.6 9.2 10.4 12.3 13.3 15.2 16.8 20.0 18 2.9 6.5 7.8 8.9 10.7 11.6 13.3 14.8 17.7 19 2.4 5.5 6.7 7.7 9.2 10.0 11.6 13.0 15.6 20 2.0 4.7 5.7 6.6 7.9 8.7 10.2 11.4 13.8 HVL 2.0 MM Cu FSD 60 cm Depth Area of Field in Square Centimetres in cm 0 20 35 50 80 100 150 200 400 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 82.0 95.5 97.4 98.4 99.9 100.4 101.5 102.1 102.9 2 67.3 86.4 89.5 91.2 93.6 94.7 96.4 97.6 100.0 3 55.0 75.5 79.9 82.6 86.2 87.7 90.2 91.9 95.2 4 45.2 65.3 70.1 73.3 77.3 79.2 82.3 84.5 88.7 5 37.3 56.3 61.0 64.4 68.7 70.5 73.7 76.1 81.1 6 30.7 47.9 52.6 56.0 60.4 62.5 65.9 68.2 73.7 7 25.3 40.9 45.4 48.7 53.1 55.0 58.7 61.0 66.6 8 20.9 34.7 39.0 42.2 46.3 48.3 52.0 54.4 60.2 9 17.3 29.5 33.5 36.4 40.6 42.3 46.0 48.1 54.0 10 14.2 25.0 28.7 31.4 35.2 37.0 40.3 42.7 48.4 11 11.8 21.2 24.6 27.0 30.5 32.3 35.3 37.6 43.1 12 9.7 18.1 21.0 23.2 26.4 28.1 30.9 33.1 38.3 13 8.0 15.4 18.0 20.0 22.9 24.4 27.1 29.1 34.0 14 6.6 13.1 15.5 17.2 19.8 21.3 23.8 25.8 30.1 15 5.5 11.1 13.2 14.8 17.1 18.5 20.8 22.7 26.6 16 4.6 9.4 11.3 12.7 14.8 16.0 18.2 20.0 23.6 17 3.8 8.0 9.6 10.9 12.9 13.9 15.9 17.6 21.0 18 3.2 6.8 8.2 9.4 11.2 12.1 13.9 15.5 18.6 19 2.6 5.8 7.0 8.1 9.7 10.5 12.2 13.7 16.4 20 2.2 4.9 6.0 6.9 8.4 9.1 10.7 12.0 14.5 176 DEPTH DOSE--Continued HVL 2.0 MNf Cu KSD 80 Cm Depth A rea of Field in Square Centimetres in cm 0 20 7.5 50 SO WO 150 200 ■too 0 100.0 lon.o 100.0 100.0 100.0 100.0 lOfl.O 100,0 109.0 1 82.9 96.1 98.0 99.0 100.5 101.0 102.1 102.7 10.3.4 2 68.5 87.6 90.6 92.5 94.8 96.0 97.6 98.8 101.2 3 56.3 77.1 81.4 84.1 87.8 89.1 91.7 93.5 96.7 4 46.6 67.1 71.9 75.2 79.2 81.0 84.2 86.4 90.7 5 38.7 58.1 62.9 66.3 70.7 72.6 75.8 78.2 83.2 6 32.1 49.7 54.5 58.0 62.6 64.8 68.1 70.6 76.0 7 26.7 42.6 47.3 50.6 .55.2 57.1 60.9 63.2 69.1 8 22.1 36.3 40.7 44.1 48.3 50.4 54.1 56.6 62.8 9 18.4 30.9 35.2 38.2 42.3 44.3 48.0 50.3 56.6 10 15.3 26.3 30.2 33.0 36.9 38.8 42.2 44.7 50.7 11 12.8 22.5 26.0 28.5 32.1 33.9 37.1 39.6 45.3 12 10.6 19.1 22.3 24.5 27.9 29.6 32.5 34.8 40.4 13 8.8 16.3 19.1 21.2 24.1 25.8 28.6 30.8 35.9 14 7.3 13.9 16.4 18.3 21.0 22.5 25.2 27.3 31.8 15 6.1 11.8 14.0 15.7 18.2 19.6 22.0 24.0 28.2 16 5.1 10.1 12.1 13.5 15.8 17.0 19.4 21.3 25.1 17 4.3 8.6 10.3 11.7 13.7 14.9 17.0 18.8 22.3 18 3.6 7.3 8.8 10.1 12.0 13.0 14.9 16.6 19.8 19 3.0 6.3 7.6 8.7 10.3 11.3 13.1 14.6 17.5 20 2.5 5.3 6.5 7.4 9.0 9.8 11.5 12.9 15.6 HVL 2.0 MM Cu FSD 100 cm Depth Area of Field in Square Centimetres in cm 0 20 35 50 0 100.0 100.0 100.0 100.0 1 83.1 96.6 98.5 99.5 2 69.2 88.4 91.4 93.2 3 57.2 78.2 82.4 85.1 4 47.7 68.2 73.1 76.3 5 39.7 59.3 64.1 67.5 6 33.0 50.9 55.9 59.3 7 27.6 43.8 48.4 51.9 8 23.0 2,1 A 41.9 45.3 9 19.2 32.0 36.4 39.4 10 15.9 27.3 31.3 34.2 11 13.4 23.4 27.0 29.5 12 11.1 19.8 23.2 25.5 13 9.3 17.0 20.0 22.1 14 7.8 14.5 17.2 19.1 15 6.5 12.5 14.7 16.4 16 5.4 10.6 12.7 14.2 17 4.6 9.0 10.8 12.3 18 3.8 7.7 9.3 10.6 19 3.2 6.6 8.0 9.1 20 2.7 5.7 6.9 7.8 80 100 150 200 400 100.0 100.0 100.0 100.0 100.0 101.0 101.4 102.5 103.1 103.8 95.6 96.6 98.3 99.5 101.9 88.7 90.2 92.8 94.5 97.7 80.3 82.2 85.4 87.5 91.9 72.0 73.8 77.1 79.5 84.6 63.9 66.2 69.5 72.0 115 56.5 58.5 62.4 64.7 70.7 49.6 51.8 55.6 58.0 B4.4 43.8 45.6 49.5 51.7 58.2 38.1 40.1 43.6 46.2 52.3 33.3 35.1 38.4 40.9 46.8 29.0 30.7 33.7 36.1 41.8 25.1 26.8 29.7 32.0 37.2 21.9 23.4 26.2 28.4 33.1 19.0 20.5 23.0 25.0 29.4 16.6 17.8 20.2 22.1 26.1 14.4 15.6 17.7 19.6 23.3 12.6 13.6 15.6 17.3 20.7 10.9 11.8 13.7 15.3 18.3 9.5 10.3 12.1 13j 16.3 DEPTH DOSE -.-Continued HVL 3.0 MM Cu I- SI) .so CM Drl>lh Area of Field in Square Centimetres in cm 0 20 SO SO too no 200 ■ton 0 100.0 100.0 lOO.O 100.0 100.0 100.0 100.0 100.0 100 0 1 82.3 94.7 96.5 97.4 98.6 99.0 100.0 100.5 lOi.4 2 68.0 85.8 88.2 89.8 91.7 92.7 94.3 95.4 97.6 3 .56.2 75.0 78.8 81.0 84.1 85.4 87.5 89.2 92.4 4 46.4 64.8 69.1 71.8 75.4 77.0 79.8 81.8 85.9 5 38.6 56.0 60.0 63.0 66.8 68.6 71.6 73.9 78.4 6 32.0 47.7 52.0 54.9 .58.8 60.9 64.0 66.4 71.0 7 26.5 40.8 44.8 47.8 51.8 54.0 56.9 59.4 64.4 8 22.0 34.9 38.7 41.5 45.5 47.6 50.4 53.0 58.2 9 18.4 29.7 33.3 36.0 39.8 41.7 44.6 47.2 52.2 10 15.4 25.3 28.6 31.1 34.7 36.6 39.5 41.8 46.8 11 12.8 21.7 24.6 26.9 30.3 32.0 34.8 37.2 41.9 12 10.7 18.5 21.1 23.2 26.4 27.9 30.6 32.7 37.3 13 9.0 15.7 18.2 20.0 22.9 24.4 26.9 28.8 33.3 14 7.5 13.4 15.7 17.3 19.9 21.2 23.6 25.4 29.5 15 6.3 11.5 13.4 15.0 17.3 18.5 20.7 22.4 26.3 16 5.3 9.8 11.5 12.9 15.0 16.1 18.2 19.7 23.4 17 4.5 8.4 9.9 11.2 13.1 14.0 15.9 17.4 20.8 18 3.7 7.2 8.5 9.6 11.4 12.2 14.0 15.4 18.5 19 3.1 6.1 7.3 8.3 9.9 10.7 12.3 13.6 16.5 20 2.6 5.2 6.3 7.2 8.6 9.3 10.8 11.9 14.6 HVL 3.0 MM Cu FSD 60 cm Depth Area of Field in Square Centimetres in cm 0 20 3S 50 80 100 150 200 100 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 82.9 95.3 97.1 98.0 99.2 99.5 100.6 101.1 102.0 2 68.8 86.7 89.2 90.8 92.7 93.7 95.3 96.4 98.7 3 57.3 16.2 80.1 82.3 85.4 86.8 88.9 90.6 93.9 4 47.5 66.1 70.5 73.2 76.8 78.5 81.3 83.3 87.4 5 39.8 57.5 61.4 64.5 68.3 70.2 73.2 75.5 80.1 6 33.2 49.1 53.4 56.4 60.3 62.5 65.6 68.1 72.8 7 27.6 42.2 46.2 49.3 53.3 55.6 58.6 61.1 66.2 8 23.1 36.2 40.0 42.9 47.0 49.1 52.0 54.7 60.0 9 19.4 30.9 34.6 37.3 41.2 43.2 46.2 48.9 54.0 10 16.3 26.4 29.8 32.3 36.1 38.0 41.0 43.3 48.5 11 13.6 22.7 25.7 28.0 31.5 33.3 36.2 38.6 43.4 12 11.4 19.4 22.1 24.2 27.5 29.1 31.9 34.1 38.8 13 9.6 16.5 19.1 20.9 24.0 25.5 28.1 30.1 34.8 14 8.1 14.2 16.5 18.1 20.9 22.2 24.7 26.6 30.9 15 6.8 12.2 14.2 15.7 18.2 19.5 21.8 23.6 27.6 16 5.8 10.4 12.2 13.6 15.8 17.0 19.2 20.8 24.6 17 4.9 8.9 10.5 11.8 13.9 14.8 16.8 18.4 21.9 18 4.1 7.6 9.1 10.2 12.1 12.9 14.8 16.3 19.6 19 3.5 6.5 7.9 8.9 10.5 11.4 13.1 14.4 17.5 20 2.9 5.6 6.8 7.7 9.2 9.9 11.5 12.7 15.6 178 DEPTH DOSE--Continued IIVLS.OmmCu ISDSOCM Depth Area of Field in Square Centimetres in cm 0 20 35 50 SO too 150 200 ■too 0 100.0 100.0 100.0 100.0 100.0 100.0 1 00.0 100.0 100.0 1 83.8 95.9 97.8 98.6 99.7 100.1 101.1 101.6 102.5 2 70.0 88.0 90.3 92.0 93.9 94.8 96.5 97.6 99.7 3 .58.6 77.9 81.7 83.8 86.9 88.2 90.4 92.1 95.4 4 49.0 68.1 72.3 15>2 78.7 80.4 83.3 85.3 89.5 5 41.3 59.5 63.4 66.5 70.4 72.3 75.3 77.7 82.3 G 34.7 51.1 .55.5 58.6 62.6 64.8 68.0 70.5 75.1 7 29.2 44.1 48.3 51.4 55.5 57.8 60.9 63.6 68.9 8 24.5 38.1 42.0 44.9 49.1 51.4 54.4 57.1 62.6 9 20.7 32.7 36.5 39.2 43.3 45.3 48.4 51.2 56.4 10 17.5 28.1 31.5 34.1 38.0 40.0 43.1 45.7 50.9 11 14.7 24.2 27.3 29.7 33.4 35.2 38.2 40.7 4.5.8 12 12.5 20.8 23.6 25.8 29.2 30.9 33.8 36.1 41.0 13 10.5 17.8 20.4 22.2 25.5 27.1 29.9 31.9 36.8 14 8.9 15.3 17.7 19.4 22.3 23.7 26.3 28.2 32.8 15 7.6 13.2 15.2 16.9 19.4 20.8 23.2 25.0 29.4 16 6.4 11.3 13.2 14.7 17.0 18.2 20.5 22.1 26.3 17 5.4 9.7 11.4 12.8 14.9 15.9 18.1 19.7 23.5 18 4.6 8.3 9.9 11.1 13.0 13.9 15.9 17.5 21.0 19 3.9 7.2 8.5 9.6 11.4 12.3 14.1 15.5 18.8 20 3.3 6.2 7.4 8.4 9.9 10.7 12.4 13.7 16.7 HVL 3.0 MM Cu FSD 100 cm Depth Area of Field in Square Centimetres cm 0 20 35 50 80 100 150 200 lOO 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 84.0 96.4 98.1 99.0 100.1 100.5 101.5 101.9 102.8 2 70.7 88.8 91.1 92.7 94.5 95.5 97.0 98.2 100.3 3 59.6 79.0 82.7 84.8 87.9 89.2 91.4 93.0 96.3 4 .50.1 69.3 73.5 76.3 79.8 81.5 84.4 86.4 90.6 5 42.4 60.8 64.7 67.8 71.7 73.6 76.7 79.1 83.7 6 35.7 52.4 56.8 59.9 63.9 66.1 69.3 71.8 76.6 7 30.1 45.5 49.6 .52.8 56.9 59.3 62.3 65.0 70.3 8 25.4 39.3 43.4 46.3 50.6 52.8 55.8 58.6 64.1 9 21.6 33.9 37.7 40.6 44.7 46.7 49.8 52.6 58.0 10 18.3 29.2 32.7 35.4 39.3 41.4 44.5 47.0 52.4 11 15.4 25.2 28.4 30.9 34.6 36.5 39.5 42.1 47.3 12 13.1 21.7 ^4.6 26.9 30.4 32.1 35.0 57 A 42.4 13 11.1 18.6 21.3 23.4 26.6 28.2 31.0 33.1 38.0 14 9.5 16.1 18.5 20.4 23.3 24.7 27.4 29.4 34.0 15 8.1 13.8 16.0 17.8 20.4 21.7 24.2 26.1 30.5 16 6.9 11.9 13.9 15.4 17.8 19.0 21.4 23.1 27.3 17 5.8 10.3 12.1 13.5 15.6 16.7 18.9 20.5 24.4 18 5.0 8.9 10.5 11.7 13.7 14.6 16.7 18.2 21.9 19 4.2 7.6 9.2 10.2 12.0 12.9 14.7 16.2 19.6 20 3.6 6.6 7.9 8.9 10.5 11.3 13.0 14.3 17.5 DEPTH DOSE --Continued HVL 4,0 MM Cu FSn 50 cm Depth Area of Field in Square Centimetres in cm 0 20 35 50 SO 100 150 200 100 0 lon.o 100 0 100,0 100.0 100.0 100.0 lO’O.O ino.o 100.0 1 83.1 91.4 96.0 96,8 97.7 98 0 '’8.8 99. .3 100,0 2 69.3 85.9 87.8 89.1 90,8 91.6 93.0 93.9 96,0 3 57.8 75.6 78.8 80.7 83.3 84.3 86.2 87.6 90.1 4 48.2 65.5 69.5 71.8 75.0 76.4 78.9 80.5 84.2 5 40.7 56.6 60.4 63.2 66.6 68.2 71.2 73.4 77.1 C 34.3 48.5 52.7 55.5 58.9 60.8 63.8 66.1 70.2 7 28.9 41.6 45.6 48.4 51.8 53.7 56.8 59.4 63.8 8 24.4 35.7 39.5 42.0 45.5 47.3 50.5 53.1 57.8 9 20.5 30.6 34.0 36.5 39.8 41.6 44.8 47.3 51.8 10 17.3 26.3 29.4 31.6 35.0 36.7 39.7 42.0 46.6 11 14.6 22.6 25.4 27.4 30.6 32.3 35.1 37.4 41.8 12 12.4 19.4 21.9 23.7 26.8 28.4 30.9 33.1 37.5 13 10.5 16.7 19.0 20.6 23.4 24.9 27.3 29.2 33.6 14 8.9 14.3 16.4 17.9 20.4 21.8 24.1 25.8 30.0 15 7.5 12.3 14.1 15.5 17.8 19.0 21.2 22.8 26.7 16 6.4 10.6 12.2 13.5 15.6 16.7 18.7 20.1 23.8 17 5.4 9.1 10.6 11.7 13.6 14.6 16.4 17.7 21.2 18 4.6 7.8 9.1 10.2 11.8 12.8 14.4 15.7 18.9 19 4.0 6.7 7.9 8.8 10.3 11.2 12.6 13.8 16.9 20 3.4 5.8 6.8 7.7 9.0 9.7 11.1 12.2 15.1 HVL 4.0 mmCu FSDSOcm Depth Area of Field in Square Centimetres in cm 0 20 35 50 80 100 150 200 400 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 84.6 95.6 97.2 97.9 98.8 99.1 99.8 100.3 101.0 2 71.4 88.0 89.7 91.1 92.8 93.6 95.0 95.9 97.9 3 60.2 78.5 81.5 83.4 86.0 87.0 88.9 90.4 93.2 4 50.9 68.8 72.7 75.0 78.2 79.7 82.2 83.9 87.5 5 43.5 60.2 63.9 66.7 70.2 71.9 74.9 77.1 80.9 6 S 1.2 52.2 56.3 59.2 62.7 64.8 67.8 70.1 74.2 7 31.7 45.3 49.2 52.1 55.1 57.8 60.9 63.6 67.9 8 27.1 39.3 43.1 45.1 49.4 51.3 54.6 57.3 62.1 9 23.1 34.0 37.5 40.1 43.6 45.4 48.8 51 .5 56.0 10 19.7 29.5 32.7 35.0 38.6 40.4 43.6 46.1 50.8 1 1 16.8 25.6 28.5 30.6 34.0 35.8 38.8 41.3 45.9 12 14.4 22.2 24.8 26.7 29.9 31.6 34.4 36.8 41.4 13 12.3 19.3 21.6 23.4 26.4 27.9 30.6 32.7 37.4 14 10.5 16.6 18.8 20.4 23.1 24.7 27.2 29.1 33.6 15 9.0 14.4 16.3 17.8 20.3 21.6 24.0 25.9 30.1 16 7.7 12.5 14.2 15.6 17.8 19.1 21.3 23.0 27.0 17 6.6 10.8 12.4 13.7 15.7 16.8 18.9 20.3 24.2 18 5.7 9.4 10.8 12.0 13.8 14.8 16.7 18.1 21.7 19 4.9 8.1 9.4 10.5 12.1 13.1 14.8 16.1 19.5 20 4.2 7.0 8.2 9.1 10.6 11.5 13.1 14.3 17.6 180 DEPTH DOSE--Continued Cobalt fiO Radiation Average photon energy 1.25 Mev HVL 1 1 mm Pb S5D 50 cm Dcjith Area of Field in Square Centimetres in cm 0 20 50 100 200 ■fOO 0.5 100.0 100.0 100.0 100.0 100.0 100.0 1 94.6 96.2 97.0 97.5 97.6 97.7 2 85.2 89.2 90.6 91.4 91.8 92.1 3 76.8 82.3 84.2 85.4 86.1 86.8 4 69.3 75.7 78.2 79.6 80.6 81.6 5 62.6 69.5 72.4 74.0 75.3 76.6 6 56.4 63.7 66.8 68.6 70.2 71.8 7 51.0 58.3 61.4 63.4 65.3 67.1 8 46.1 53.3 56.4 58.6 60.7 62.7 9 41.7 48.7 51.7 53.9 56.2 58.6 10 37.8 < 47.4 49.7 52.2 54.9 11 34.3 40.6 43.5 45.8 48.4 51.2 12 31.1 37.1 40.0 42.2 45.0 47.8 13 28.2 33.9 36.7 39.0 41.7 44.7 14 25.6 31.0 33.7 36.0 38.7 41.7 15 23.3 28.4 30.9 33.2 36.0 39.0 16 21.1 26.0 28.4 30.6 33.4 36.5 17 19.3 23.8 26.1 28.3 31.1 34.2 18 17.5 21.8 24.0 26.2 28.9 32.0 19 15.9 19.9 22.2 24.2 26.9 29.9 20 14.5 18.2 20.3 22.4 25.0 28.1 Cobalt 60 SSD 60 cm Depth Area of Field in Square Centimetres in cm 0 20 50 100 200 400 0.5 100.0 100.0 100.0 100.0 100.0 100.0 1 95.0 96.7 97.1 97.8 97.9 98.1 2 86.0 90.1 91.2 92.2 92.6 93.0 3 77.9 83.7 85.4 86.6 87.4 88.0 4 70.7 77.6 79.7 81.2 82.3 83.2 5 64.2 i\n 74.2 75.9 77.3 78.4 6 58.3 66.1 68.9 70.7 72.4 73.7 7 53.0 60.8 63.7 65.7 67.6 69.2 8 48.2 .55.8 58.8 60.9 63.0 65.0 9 43.9 51.2 54.2 56.4 58.6 60.9 10 39.9 46.9 49.9 52.2 54.5 57.1 11 36.3 43.0 46.0 48.3 50.7 53.4 12 33.1 39.4 42.4 44.7 47.2 50.0 13 30.2 .36.1 39.1 41.4 44.0 47.0 14 27.5 33.1 36.0 38.3 41.0 44.0 15 25.1 30.4 33.2 35.5 38.2 41.2 16 22.9 27.9 30.6 32.9 35.6 38.6 17 20.9 25.7 28.2 30.5 33.2 36.2 18 19.1 23.7 26.0 28.3 31.0 34.1 19 17.4 21.8 24.0 26.2 28.9 32.0 20 15.9 20.0 22.1 24.2 27.0 30.0 81 373-062 0 - 70 - 13 DEPTH DOSE --Continued Cobalt 60 SSD 80 cm Dcjilli A rea of Field in Square Centimetres in cm 0 20 50 100 200 ■too 0.5 1(4). 0 100.0 100.0 100.0 lOD.O 100.0 1 95.4 97.0 97.7 98.2 98.4 98.5 2 87.1 91.0 92.5 93.4 93.7 94.0 .3 79.5 85.3 87.2 88.4 89.0 89.6 4 72.7 79.6 82.0 83.4 84.4 85.2 5 66.5 74.1 76.9 78.5 79.9 80.8 6 60.8 68.9 71.8 73.7 75.2 76.4 7 .55.6 63.8 66.8 68.9 70.7 72.1 8 50.9 58.9 62.1 64.2 66.3 68.0 0 46.6 .54.3 57.5 59.8 62.1 64.1 10 42.7 50.1 53.3 55.7 58.1 60.3 1 1 39.2 46.2 49.4 51.8 54.3 56.7 12 35.9 42.6 45.8 48.2 50.8 53.3 13 32.9 39.3 42.4 44.9 47.6 50.1 14 30.2 36.3 39.3 41.8 44.5 47.1 15 27.7 33.5 36.4 38.9 41.8 44.3 16 25.4 31.0 33.8 36.2 39.0 41.7 17 23.3 28.7 31.3 33.8 36.5 39.2 18 21.4 26.5 29.0 31.4 34.2 36.9 19 19.6 24.5 27.0 29.3 32.0 34.7 20 18.0 22.6 25.0 27.3 30.0 32.7- Cobalt 60 SSD 100 cm Depth in cm 0 20 Area of Field in 50 Square Centimetres 100 200 400 0.5 100.0 100.0 100.0 100.0 100.0 100.0 1 95.9 97.2 97.9 98.6 98.8 98.8 2 87.9 91.7 93.0 94.0 94.5 94.6 3 80.7 86.3 88.1 89.4 90.1 90.5 4 73.8 81.0 83.2 84.8 85.7 86.4 5 67.8 Ib.l 78.4 80.2 81.3 82.3 6 62.3 70.6 73.6 75.6 76.9 78.2 7 57.3 65.7 68.8 71.0 72.5 74.1 8 52.7 61.0 64.2 66.5 68.3 70.1 9 48.5 56.5 59.7 62.1 64.2 66.2 10 44.7 52.3 55.5 57.9 60.3 62.5 11 41.2 48.4 51.6 54.0 56.6 58.8 12 38.0 44.8 48.0 50.4 53.1 55.4 13 35.0 41.5 44.6 47.1 49.8 52.2 14 32.2 38.5 41.5 44.0 46.7 49.2 15 29.6 35.7 38.6 41.1 43.8 46.4 16 27.2 33.1 35.9 38.4 41.1 43.7 17 25.0 30.7 33.4 35.9 38.6 41.2 18 23.0 28.5 31.1 33.6 36.3 38.8 19 21.2 26.4 29.0 31.4 34.1 36.6 20 19.5 24.4 27.0 29.2 32.0 34.5 182 DEPTH DOSE --Continued Depth Dose in Wa itr i or Linear Accfi.erator for 100% at Peak 4.2 Mev 15D 100 cm HVL15.7mmCu C ourtesy of M. J. Day and !•'. T. raiincr: Hril. J. Radiol. field Si 1C Zero ,1 ren 2 X 2 VX -/ 6 X 6 fixs JOXIO 12X12 14X1 ! 16X16 ISXIS 20X20 l-'.quiv din Cfn cm cm cm cm cm cm cm cm cm Depth cm 0 2.2 7.5 6.7 9.0 11.2 13.4 15.6 17. S 20.0 22.1 1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.35 99.0 99.0 99.1 99.1 99.2 99.2 99.3 99.3 99.3 99.4 99.5 1.5 97.9 98.0 98.0 98.1 98.3 98.5 98.7 98.8 99.0 99.2 99.3 2 93.9 94.6 95.2 96.0 96.4 96.7 97.0 97.2 97.4 97.7 97.9 4 80.2 82.9 85.0 86.6 81. ry 88.1 88.6 89.0 89.3 89.7 90.1 6 68.6 71.9 74.6 76.8 78.0 78.9 79.5 80.0 80.6 81.2 81.6 8 . 59.1 61.9 65.0 fyl.l 69.3 70.5 71.3 72.1 72.7 73.3 73.7 10 50.9 53.6 56.7 59.6 61.5 62.9 63.9 65.0 65.7 66.5 67.1 12 44.2 46.4 49.3 . 52.1 , 54.3 . 55.8 57.0 57.9 59.0 . 59.8 60.5 14 38.2 40.2 42.8 45.5 47.4 49.0 50.2 51.3 52.3 53.3 54.0 16 33.4 35.3 37.6 39.9 41.5 43.5 44.8 45.9 47.0 47.9 48.7 18 29.2 30.7 32.7 34.8 36.8 38.4 39.6 40.8 41.8 42.8 43.5 20 25.5 26.8 28.6 30.6 32.6 34.0 35.3 36.4 37.4 38.3 39.2 22 22.3 23.4 25.2 26.9 28.5 30.0 31.3 32.3 33.2 34.2 34.9 24 19.5 20.6 22.0 23.6 25.2 26.5 27.6 28.6 29.5 30.5 31.2 26 17.1 18.0 19.5 20.8 22.3 23.4 24.4 25.3 26.2 27.0 27.8 28 14.9 15.8 17.0 18.4 19.6 20.7 21.6 22.4 23.3 24.1 24.7 30 13.1 14.0 15.1 16.3 17.3 18.3 19.1 19.8 20.7 21.4 22.0 22 Mev Betatron Radiation with Copper Compensating Filter Depth FSD — 70 cm FSD — 100 cm 0.0 20 19 0.5 51.0 50.0 1.0 71.0 70.0 2.0 92.8 90.1 3.0 99.2 98.0 4.0 100.0 100.0 5.0 98.2 99.5 6.0 93.3 96.6 7.0 89.0 93.0 8.0 84.9 89.1 9.0 81.0 85.3 10.0 77.1 81.9 11.0 73.5 78.5 12.0 70.0 75.5 13.0 66.7 72.5 14.0 63.6 69.6 15.0 60.5 67.0 16.0 57.7 64.2 17.0 55.0 61.6 18.0 52.4 . 59.1 19.0 49.9 56.8 20.0 47.5 54.5 183 DEPTH DOSE --Continued Rectangular I'iF.i.Ds HVL 0.5 mm Cii KSD 50cm RecTANGLI.AR FIEI.DS in cm X CM Depth in cm 4X4 4X6 4XS 4X10 4X15 4X20 6X6 6X8 6X10 6X15 6X20 * 121.4 124.4 126.1 127.2 128.5 129.2 128.3 130.6 1.32.1 134.0 135.0 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 91.4 92.7 93.3 93.8 94.3 94.4 94.2 95.1 95.6 96.3 96.5 2 77.6 79.7 80.9 81.6 82.5 82.8 82.4 83.9 84.9 86.0 86.4 .5 64.4 66.9 68.4 69.4 70.5 71.1 70.2 72.2 73.3 74.8 75.5 4 52.6 55.4 57.1 58.2 59.5 60.1 59.0 61.3 62.6 64.3 65.2 5 42.9 45.7 47.4 48.6 50.0 50.7 49.3 51.6 53.0 54.9 55.8 6 .35.0 37.7 39.4 40.4 41.9 42.6 41.1 43.3 44.6 46.6 47.6 7 28.5 31.0 32.6 33.5 35.0 35.7 34.2 36.2 37.4 39.4 40.4 8 23.5 25.6 27.0 27.9 29.3 30.0 28.4 30.2 31.4 33.3 34.2 9 19.4 21.2 22.4 23.2 24.6 25.2 23.6 25.1 26.3 28.1 29.0 10 16.0 17.5 18.6 19.3 20.6 21.1 19.6 21.0 22.0 23.7 24.6 11 13.1 14.5 15.5 16.1 17.2 17.8 16.3 17.6 18.5 20.0 20.9 12 10.7 12.0 12.9 13.5 14.4 15.0 13.6 14.8 15.6 16.9 17.7 13 8.8 9.9 10.7 11.3 12.1 12.6 11.3 12.4 13.1 14.3 15.0 14 7.3 8.2 8.9 9.4 10.1 10.6 9.4 10.3 11.0 12.1 12.8 15 6.0 6.8 7.4 7.8 8.5 8.9 7.8 8.6 9.2 10.2 10.7 16 5.0 5.6 6.1 6.5 7.1 7.5 6.5 7.2 7.7 8.6 9.1 17 4.1 4.7 5.1 5.4 5.9 6.3 5.4 6.0 6.4 7.2 7.7 18 3.3 3.9 4.2 4.5 5.0 5.3 4.5 5.0 5.4 6.1 6.5 19 2.7 3.2 3.5 3.8 4.2 4.5 3.8 4.2 4.6 5.2 5.5 20 2.2 2.6 2.9 3.1 3.5 3.7 3.1 3.5 3.8 4.3 4.7 Depth in cm 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 ♦ 133.4 135.2 137.6 139.0 137.3 140.1 141.8 143.9 146.2 148.9 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 96.1 96.7 97.6 97.8 97.5 98.4 98.6 99.4 99.6 99.8 2 85.8 86.7 88.1 88.6 87.9 89.5 90.1 91.3 92.0 92.9 3 74.3 75.7 77.6 78.5 77.3 79.4 80.4 81.9 83.2 84.7 4 63.8 65.3 67.4 68.5 67.1 69.5 70.7 12A 73.9 15.7 5 54.2 55.8 58.1 59.2 57.7 60.3 61.6 63.5 65.1 66.9 6 45.8 47.4 49.8 51.0 49.2 52.0 53.4 55.4 57.0 58.9 7 38.6 40.1 42.5 43.7 41.8 44.6 46.0 48.0 49.7 51.6 8 32.3 33.8 36.1 37.3 35.4 38.1 39.5 41.4 43.1 45.0 9 27.0 28.4 30.6 31.8 30.0 32.5 33.8 35.6 37.3 39.2 10 22.7 24.0 26.0 27.1 25.4 27.7 29.0 30.6 32.3 .34.1 11 19.1 20.3 22.0 23.1 21.5 23.6 24.8 26.3 27.8 29.6 12 16.1 17.1 18.7 19.7 18.3 20.1 21.2 22.5 24.0 25.7 13 13.6 14.5 15.9 16.8 15.5 17.2 18.2 19.3 20.7 22.2 14 11.4 12.2 13.5 14.3 13.1 14.7 15.6 16.6 17.8 19.2 15 9.5 10.2 11.4 12.2 11.0 12.5 13.3 14.2 15.3 16.6 16 8.0 8.5 9.6 10.4 9.3 10.6 11.4 12.2 13.2 14.4 17 6.7 7.2 8.2 8.8 7.9 9.0 9.7 10.5 11.4 12.4 18 5.6 6.1 7.0 7.5 6.7 7.7 8.3 9.0 9.8 10.7 19 4.7 5.2 6.0 6.4 5.7 6.6 7.1 7.7 8.5 9.3 20 4.0 4.3 5.0 5.4 4.8 5.6 6.1 6.6 7.3 8.0 *The first line gives the surface dose for 100 r of primary. 184 DEPTH DOSE--Continued Rkctangh.ar Fields HVLI. OmmCu FSD r>0 cm Rectangular Fiei.ds in cm X cm Drl'ili in cm vxy yxrt ■fXH ■fxio yx/y ■1X20 6X6 6XS 6X10 6XJ'i 6X20 * 1 IH.O 121. 1 123.0 124.3 125.8 126.6 125.2 127.9 129.7 131.8 133.0 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 92.9 94.7 95.5 96.0 96.6 96.8 96.9 97.9 98.5 99.3 99.5 2 81.3 84.3 85.7 86.5 87.4 87.7 87.9 89.6 90.6 91.7 92.1 .1 70.3 73.5 75.3 76.5 77.8 78.3 llA 79.8 81.3 82.9 83.6 4 60.0 63.2 65.1 66.4 68.0 68.7 67.2 69.7 71.3 73.4 74.4 5 .->0.7 53.8 55.8 57.1 58.7 59.5 bin 60.2 61.9 64.2 65.2 6 42.7 45.5 47.4 48.8 50.4 51.3 49.2 51.6 53.4 55.7 56.8 7 3.').8 38.3 40.1 41.5 43.1 44.0 41.7 44.1 45.8 48.1 49.2 H 29.9 32.2 33.9 35.2 36.8 37.7 35.3 37.6 39.2 41.4 42.5 !) 2.7.0 27.1 28.7 29.8 31.4 32.2 29.9 32.0 33.5 35.6 36.7 10 20.9 22.8 24.2 25.2 26.7 27.5 25.3 27.2 28.6 30.6 31.6 1 1 17.4 19.2 20.4 21.3 22.7 23.5 21.4 23.1 24.3 26.2 27.2 12 14.6 16.2 17.3 18.1 19.4 20.1 18.1 19.6 20.7 22.5 23.4 l.S 12.2 13.6 14.6 15.4 16.5 17.1 15.3 16.6 17.6 19.3 20.1 14 10.2 11.4 12.3 13.0 14.0 14.6 12.9 14.1 15.0 16.5 17.2 IT) 8.6 9.6 10.4 11.0 11.9 12.5 10.9 12.0 12.8 14.1 14.8 16 7.2 8.1 8.7 9.3 10.1 10.7 9.2 10.2 10.9 12.0 12.7 17 6.0 6.8 7.3 7.8 8.6 9.1 7.8 8.6 9.2 10.3 10.9 IH .7.0 5.7 6.2 6.6 7.3 7.7 6.6 7.3 7.8 8.8 9.4 19 4.2 4.8 5.2 5.6 6.2 6.6 5.6 6.2 6.7 7.5 8.1 20 3.5 4.0 4.4 4.8 5.3 5.6 4.7 5.3 5.7 6.4 6.9 Depth in cm SXS SXIO 8 X 15 8 X 20 10 X 10 10 X 15 10 X 20 15 X 15 15 X 20 20 X 20 * 131.1 133.3 136.0 137.5 135.7 138.9 140.7 143.0 145.6 148.7 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 99.1 99.8 100.7 100.9 100.6 101.5 101.8 102.6 102.8 103.0 2 91.6 92.8 94.0 94.5 94.0 95.4 95.9 97.0 97.6 98.4 3 82.5 84.2 86.2 87.0 86.1 88.3 89.2 90.9 92.0 93.4 4 72.6 lA.b 77.0 78.1 76.6 79.4 80.7 82.8 84.4 86.1 r> 63.2 65.2 67.8 69.1 67.3 70.3 71.8 74.0 lb .8 77.8 6 54.6 56.6 59.4 60.6 58.8 61.9 63.4 65.6 61. b 69.7 7 46.9 48.9 51.7 52.9 51.1 54.2 bb.l 57.9 59.9 62.2 8 40.2 42.1 44.8 46.1 44.2 47.2 48.8 50.9 53.0 55.3 9 34.4 .36.2 38.7 40.1 38.2 41.1 42.6 44.6 46.7 49.1 10 29.4 31.1 33.4 34.8 32.9 35.6 37.1 39.0 41.0 43.4 11 25.1 26.6 28.8 30.2 28.3 30.8 32.3 34.0 35.9 38.2 12 21.4 22.1 24.9 26.1 24.3 26.6 28.1 29.6 31.4 33.5 13 18.3 19.4 21.4 22.5 20.8 23.0 24.3 25.8 27.4 29.3 14 15.6 16.6 18.4 19.4 17.8 19.8 21.0 22.4 23.9 25.7 15 13.2 14.2 15.8 16.7 15.3 17.1 18.2 19.4 20.8 22.5 16 11.2 12.1 13.5 14.4 13.1 14.8 15.8 16.9 18.2 19.7 17 9.5 10.3 11.6 12.4 11.2 12.7 13.7 14.7 15.9 17.2 18 8.1 8.8 10.0 10.7 9.6 10.9 11.8 12.7 13.8 15.1 19 7.0 7.6 8.6 9.3 8.3 9.4 10.2 11.0 12.0 13.2 20 6.0 6.5 7.4 8.0 7.1 8.1 8.8 9.5 10.4 11.5 * The first line gives the surface dose for 100 r of primary. DEPTH DOSE,- -Continued RrcTANr.iii.AR I'iF.LDS nVL 1.5 MM fUj )'.S1)50cm RrCTANGULAR iMF.l.DS IN CM X CM Depth in cm 4X-/ ■fX6 4XS ■fXIO ■4X15 4X20 6X6 6XS 6X10 6X 15 6X20 * 116.6 119.3 121.0 122.2 123.7 124.5 123.0 125.3 126.9 129.1 1.30.3 0 100.0 100.0 100,0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 91.0 95.3 96.0 96.4 97.0 97.2 97.0 97.8 98.4 99.1 99.4 2 83.2 85.5 86.8 87.5 88.4 88.8 88.5 90.0 91.0 92.1 92.6 3 72.0 74.9 76.6 77.6 78.8 79.3 78.5 80.8 82.1 83.8 84.5 4 61.3 64.4 66.3 67.6 69.0 69.7 68.2 70.8 72.4 74.4 75.3 5 52.2 55.1 57.1 58.4 60.0 60.8 58.9 61.5 63.2 65.4 66.4 6 44.2 47.0 48.9 50.2 52.0 52.8 50.6 53.2 54.9 57.2 58.3 7 37.3 40.0 41.8 43.1 44.8 45.7 43.4 45.8 47.5 49.8 51.0 8 31.4 33.9 35.6 36.8 38.5 39.4 37.0 39.3 40.9 43.2 44.4 9 26.4 28.6 30.2 31.4 33.0 33.9 31.5 33.6 35.2 37.4 38.6 10 22.3 24.2 25.6 26.7 28.2 29.1 26.9 28.8 30.2 32.3 33.5 11 18.8 20.5 21.8 22.8 24.2 25.0 22.9 24.6 25.9 27.8 29.0 12 15.8 17.4 18.5 19.4 20.7 21.5 19.5 21.0 22.2 24.0 25.1 13 13.3 14.7 15.7 16.5 17.7 18.5 16.6 17.9 19.0 20.7 21.7 14 11.2 12.4 13.4 14.1 15.2 15.9 14.1 15.3 16.3 17.8 18.7 15 9.4 10.5 11.4 12.0 13.1 13.6 12.0 13.1 14.0 15.4 16.2 16 7.9 8.9 9.6 10.2 11.2 11.7 10.2 11.2 12.0 13.3 14.0 17 6.7 7.5 8.2 8.7 9.6 10.1 8.7 9.6 10.3 11.5 12.1 18 5.7 6.4 7.0 7.4 8.2 8.7 7.4 8.2 8.9 10.0 10.5 19 4.8 5.4 5.9 6.3 7.1 7.5 6.3 7.0 7.6 8.6 9.1 20 4.0 4.6 5.0 5.4 6.1 6.5 5.3 6.0 6.5 7.4 7.9 Depth in cm 8 X 8 8 X 10 8 X 15 8 X 20 10 X 10 10 X 15 10 X 20 15 X 15 15 X 20 20 X 20 * 128.2 130.2 133.0 134.5 132.4 135.7 137.6 140.0 142.6 145.7 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 98.8 99.5 100.3 100.6 100.2 101.2 101.5 102.3 102.5 102.7 2 91.8 92.9 94.3 94.9 94.1 95.6 96.3 97.4 98.3 99.3 3 83.2 84.8 86.8 87.7 86.6 88.8 89.8 91.4 92.7 94.2 4 73.7 75.6 78.0 79.0 77.7 80.4 81.6 83.5 85.1 86.9 5 64.5 66.5 69.1 70.3 68.7 71.7 73.1 75.3 77.1 79.2 6 ,56.1 58.1 60.9 62.2 60.4 63.5 65.0 67.3 69.3 71.7 7 48.6 50.6 53.4 54.8 52.9 56.0 57.7 59.9 62.0 64.6 8 42.0 43.9 46.6 48.1 46.1 49.2 50.9 53.0 55.3 57.9 9 36.2 38.0 40.6 42.1 40.1 43.1 44.8 46.8 49.1 51.7 10 31.1 32.8 35.3 36.7 34.7 37.6 39.2 41.2 43.4 45.9 11 26.7 28.3 30.6 32.0 30.0 32.7 34.3 36.1 38.2 40.6 12 22.9 24.3 26.5 27.8 25.9 28.4 30.0 31.6 33.6 35.8 13 19.7 20.9 22.9 24.1 22.4 24.7 26.1 27.6 29.4 31.5 14 16.9 18.0 19.8 21.0 19.4 21.5 22.8 24.2 25.8 27.7 15 14.5 15.5 17.2 18.3 16.8 18.7 19.9 21.2 22.7 24.3 16 12.4 13.4 14.9 15.9 14.5 16.3 17.4 18.6 19.9 21.4 17 10.7 11.6 13.0 13.9 12.5 14.2 15.2 16.4 17.5 18.8 18 9.2 10.0 11.3 12.1 10.8 12.4 13.3 14.4 15.4 16.6 19 7.9 8.6 9.8 10.5 9.3 10.8 11.6 12.6 13.6 14.6 20 6.7 7.4 8.5 9.1 8.1 9.4 10.1 11.0 11.9 12.8 *The first line gives the surface dose for 100 r of primary. DEPTH DOSE --Continued Recianciu.ar Fields UVL 2.0 sjst Cn r. sn.'iOcM Kectanci'Lar Fiei.ds in cm X cm Defiih ill cm vx / ■tX6 VX.V IX/0 ■fxn ■IX. 20 61 ^ (> 6XS 6X10 6x n 6X20 ♦ 114.4 116.9 118.4 119.4 120.8 121.6 120.1 122.2 123.7 125.7 126.9 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 93.8 95.2 95.8 96.2 96.7 96.9 96.8 97.7 98.2 98.8 99.0 2 83.9 85.9 87.0 87.7 885 88.9 88.4 89.8 90.7 91.8 92.3 3 72.5 75.2 76.7 77.7 78.9 79.4 78.6 80.6 81.9 83.5 84.2 4 62.1 65.0 66.7 67.9 69.4 70.0 68.7 71.0 725 745 75.4 ,5 52.9 55.7 57.6 58.8 60.5 61.2 595 61.9 63.5 65.6 66.6 6 44.9 47.6 49.5 .50.7 52.4 53.2 51.3 53.7 55.3 57.5 58.6 7 38.0 40.6 42.4 43.6 45.3 46.1 44.1 46.4 48.0 50.3 51.4 8 32.1 34.6 36.3 37.4 39.1 39.9 37.8 40.1 41.6 43.8 45.0 9 27.1 29.4 31.0 32.1 33.7 345 32.4 34.5 36.0 38.1 39.3 10 22.9 25.0 26.5 27.5 29.0 29.8 27.7 29.7 31.1 33.1 34.2 11 19.4 21.3 22.6 23.6 25.0 25.8 23.6 25.5 26.8 28.7 29.8 12 16.5 18.1 19.3 20.2 21.5 22.3 20.2 21.9 23.1 24.9 25.9 13 14.0 15.4 165 17.3 18.5 19.3 17.3 18.8 19.9 21.6 225 14 11.9 13.1 14.1 14.8 15.9 16.7 14.8 16.1 17.1 18.7 19.6 15 10.1 11.2 12.1 12.7 13.7 14.4 12.7 13.8 14.7 16.2 17.0 16 8.5 9.5 10.3 10.9 11.8 12.4 10.9 11.8 12.6 14.0 14.8 17 7.2 8.1 8.8 9.3 10.2 10.7 9.3 10.1 10.9 12.1 12.9 18 6.1 6.9 7.5 8.0 8.8 9.3 7.9 8.7 9.4 10.5 11.2 19 5.2 5.9 6.4 6.8 7.6 8.0 6.7 75 8.1 9.1 9.7 20 4.4 4.9 5.4 5.8 6.5 6.9 5.7 6.4 6.9 7.9 8.4 Depth in cm 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 * 124.8 126.5 129.2 130.7 128.6 131.7 1335 135.8 138.4 141.5 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 98.6 99.3 100.0 100.3 99.9 100.8 101.0 101.7 102.0 102.4 2 91.4 92.5 93.8 94.4 93.6 95.1 95.8 96.9 97.8 98.9 3 83.0 84.5 86.4 87.3 86.1 88.3 89.3 90.9 92.1 93.6 4 73.6 75.4 77.8 78.9 77.4 80.1 81.4 83.4 85.0 86.8 5 64.7 66.6 69.1 70.4 68.7 71.6 73.0 75.1 77.0 79.1 6 565 58.5 61.1 62.5 60.6 63.6 65.2 67.3 69.3 71.6 7 49.2 51.1 53.8 55.3 53.2 56.3 57.9 60.1 62.2 64.6 8 42.7 44.5 47.2 48.7 46.6 49.7 51.3 53 Ji 55.6 58.1 9 37.0 38.7 41.4 42.8 40.7 43.8 45.3 47.5 49.6 52.1 10 32.0 33.6 36.2 37.5 355 38.4 40.0 42.0 44.1 465 11 27.6 29.1 31.6 32.8 30.9 33.6 35.2 37.1 39.1 41.4 12 23.8 25.2 27.5 28.7 26.9 29.4 30.9 32.7 34.6 36.7 13 20.5 21.8 23.9 25.1 23.4 25.7 27.1 28.7 30.5 325 14 17.6 18.9 20.8 21.9 20.3 22.4 23.8 25.2 26.9 28.7 15 15.2 16.3 18.1 19.1 17.6 19.6 20.8 22.2 23.7 25.4 16 13.1 14.1 15.7 16.7 15.2 17.1 18.2 19.5 20.9 22.5 17 11.3 12.2 13.7 14.6 13.2 15.0 16.0 17.2 18.4 19.9 18 9.8 10.5 12.0 12.8 11.5 13.2 14.0 15.2 16.3 17.6 19 8.4 9.1 10.5 11.2 10.0 115 12.3 13.4 14.4 15.6 20 7.2 7.9 9.1 9.7 8.7 10.0 10.8 11.7 12.7 13.7 * The first line gives the surface dose for 100 f of primary. 187 DEPTH DOSE--Continued Ri.ci AN(;iii.AK I ii;i,i)s liVLS.OMMCu FSDSOcm RfC.I A^Glll.AR I' lEI DS IN CM X CM Drf)th in cm 4X4 4X6 4XS ■IXIO 4X/5 4X20 6X6 6XS 6X/0 6X/‘> 6X20 * 111.6 113.7 114.9 115.8 117.0 117.6 116.4 118.2 119.4 121.1 122.1 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 93.9 95.1 95.6 95.9 96.3 96.5 96.5 97.1 97.5 98.1 98.3 2 84.6 86.2 87.1 87.6 88.4 88.7 88.3 89.4 90.1 91.2 91.5 3 73.7 76.0 77.3 78.1 79.2 79.7 78.8 80.5 81.6 83.1 83.6 4 63.1 65.8 67.4 68.4 69.6 70.3 69.0 71.0 72.4 74.1 75.0 5 54.2 56.7 58.4 59.5 60.9 61.6 60.1 62.2 63.7 65.6 66.6 6 46.3 48.7 50.4 51.5 53.1 53.8 52.0' 54.2 55.7 57.8 58.8 7 39.3 41.7 43.4 44.5 46.1 46.8 44.9 47.1 48.6 50.8 51.8 8 33.4 35.7 37.3 38.5 40.0 40.7 38.7 40.9 42.4 44.5 45.6 9 28.5 30.6 32.1 33.2 34.7 35.4 33.4 35.4 36.9 38.9 40.0 10 24.3 26.2 27.6 28.6 30.0 30.8 28.7 30.6 32.0 34.0 35.0 11 20.7 22.4 23.7 24.6 26.0 26.7 24.7 26.4 27.7 29.6 30.6 12 17.6 19.1 20.4 21.2 22.5 23.1 21.2 22.8 24.0 25.7 26.7 13 15.1 16.3 17.5 18.3 19.5 20.0 18.2 19.7 20.8 22.4 23.3 14 12.9 14.0 15.0 15.'/ 16.9 17.4 15.7 17.0 18.0 19.5 20.3 15 11.0 12.0 12.8 13.5 14.6 15.1 13.5 14.6 15.5 17.0 17.7 16 9.4 10.3 11.0 11.6 12.6 13.1 11.6 12.6 13.4 14.8 15.5 17 8.0 8.8 9.4 10.0 10.9 11.4 10.0 10.9 11.6 12.9 13.5 18 6.8 7.5 8.1 8.6 9.4 9.9 8.6 9.4 10.0 11.2 11.8 19 5.8 6.4 7.0 7.4 8.1 8.6 7.4 8.1 8.7 9.8 10.3 20 4.9 5.5 6.0 6.4 7.1 7.5 6.3 7.0 7.6 8.5 9.0 Depth in cm 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 * 120.4 121.9 124.1 125.3 123.7 126.2 127.7 129.6 131.5 133.7 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 97.9 98.3 99.1 99.3 98.9 99.7 100.0 100.6 101.0 101.4 2 90.7 91.6 92.8 93.3 92.6 93.9 94.5 95.6 96.2 96.8 3 82.4 83.7 85.4 86.3 85.1 87.0 88.1 89.5 90.8 92.3 4 73.4 74.9 77.1 78.1 76.7 79.1 80.3 82.1 83.8 85.7 5 64.8 66.5 68.8 70.0 68.4 71.1 72.5 74.5 76.2 78.3 6 56.8 58.6 61.1 62.3 60.6 63.5 65.0 67.0 68.9 71.3 7 49.7 51.5 54.1 55.3 53.6 56.5 58.1 60.1 62.0 64.2 8 43.4 45.2 47.7 49.0 47.2 50.1 51.7 53.7 55.6 51.9 9 37.8 39.6 42.0 43.3 41.5 44.3 45.9 47.9 49.8 52.0 10 32.8 34.5 36.9 38.1 36.3 39.1 40.6 42.6 44.5 46.7 11 28.5 30.0 32.3 33.5 31.7 34.4 35.8 37.7 39.6 41.7 12 24.8 26.1 28.3 29.4 27.7 30.3 31.5 33.3 35.1 37.2 13 21.5 22.7 24.7 25.8 24.2 26.6 27.8 29.4 31.1 33.1 14 18.6 19.7 21.6 22.6 21.1 23.3 24.5 25.9 27.5 29.4 15 16.1 17.1 18.9 19.8 18.4 20.4 21.6 22.9 24.4 26.2 16 13.9 14.9 16.5 17.4 16.0 17.9 19.0 20.2 21.6 23.2 17 12.0 13.0 14.4 15.3 13.9 15.7 16.7 17.8 19.1 20.7 18 10.4 11.3 12.6 13.4 12.2 13.8 14.7 15.7 16.9 18.5 19 9.0 9.8 11.1 11.8 10.7 12.1 13.0 13.9 15.0 16.4 20 7.8 8.5 9.7 10.3 9.3 10.6 11.4 12.3 13.3 14.5 *The first line gives the surface dose for 100 r of primary. 188 DEPTH DOSE--Continued ;U cm Rcctangular Fields in cm X cm Drf)lh iM cm ■1X1 ■1X6 ■fX8 -iXIO 4X18 4X20 6X8 6X10 6X18 6X20 * 101.1 101.3 101.5 101.6 101.8 101.9 101.6 101.8 102.0 102.3 102.5 0 0.5 Surface dose 30 to 50% depending upon collimator 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 96.0 96.3 96.5 96.6 96.6 96.6 96.7 96.9 97.0 97.1 97.1 2 88.7 89.3 89.6 89.8 89.9 89.9 90.1 90.5 90.6 90.8 90.9 3 81.6 82.5 82.9 83.1 83.3 83.4 83.6 84.1 84.4 84.7 84.8 4 75.0 76.0 76.5 76.7 77.0 77.1 77.3 77.9 78.3 78.7 78.9 5 68.8 70.0 70.4 70.7 71.1 71.2 71.3 72.0 12.5 73.0 73.2 6 63.0 64.1 64.7 65.1 65.5 65.6 65.6 66.4 66.9 67.5 67.8 7 57.6 58.7 59.4 59.8 60.2 60.4 60.2 61.1 61.6 62.2 62.6 8 52.6 53.7 54.4 54.8 55.3 55.5 55.2 56.1 56.6 57.3 57.7 9 48.0 49.1 49.8 50.1 50.7 51.0 50.5 51.4 52.0 52.7 53.2 10 43.8 44.9 45.5 45.9 46.5 46.8 46.2 47.1 47.7 48.5 49.0 11 40.0 41.0 41.6 42.0 42.6 43.0 42.3 43.2 43.8 44.7 45.1 12 36.5 37.5 38.1 38.5 39.1 39.5 38.8 39.7 40.2 41.1 41.6 13 33.3 34.3 34.9 35.3 35.9 36.3 35.6 36.4 37.0 37.9 38.4 14 30.5 31.4 32.0 32.4 33.0 33.4 32.6 33.4 34.0 34.9 35.4 15 27.9 28.7 29.3 29.7 30.3 30.7 29.9 30.6 31.2 32.1 32.7 16 25.5 26.2 26.8 27.2 27.9 28.2 27.4 28.1 28.7 29.6 30.2 17 23.3 24.0 24.6 24.9 25.6 26.0 25.1 25.8 26.4 27.3 27.9 18 21.3 22.0 22.6 22.9 23.5 24.0 23.0 23.7 24.3 25.2 25.8 19 19.5 20.2 20.7 21.0 21.6 22.1 21.1 21.8 22.4 23.3 23.8 20 17.8 18.5 19.0 19.3 19.9 20.3 19.4 20.0 20.6 21.5 22.0 Depth in cm 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 * 102.1 102.3 102.7 103.0 102.5 103.0 103.4 103.7 104.1 104.6 0 0.5 Surface dose 30 to 50% depending upon collimator 100.0 100.0 100.0 100.0 100.0 100.0 100.0 lod.o 100.0 100.0 1 97.1 97.3 91 A 97.4 97.5 97.6 97.6 97.7 97.7 97.7 2 90.9 91.1 91.3 91.4 91.4 91.6 91.7 91.9 92.0 92.1 3 84.7 85.0 85.4 8b. b 85.4 85.8 86.0 86.2 86.5 86.7 4 78.7 79.1 79.6 79.8 79.6 80.1 80.4 80.7 81.1 81.5 5 72.9 73.4 74.0 74.3 74.0 74.6 75.0 lb A 75.9 16A 6 67.4 67.9 68.6 69.0 68.6 69.4 69.8 70.3 70.9 71.6 7 62.1 62.7 63.5 64.0 63.4 64.4 64.9 65.5 66.2 67.0 8 57.1 bin 58.6 59.2 58.5 59.6 60.2 60.9 61.7 62.6 9 52.4 53.1 54.1 54.7 53.9 55.1 55.8 56.6 bl.b 58.5 10 48.1 48.8 49.9 50.5 49.7 50.9 51.7 52.5 53.6 bi.l 11 44.2 44.9 46.0 46.7 45.8 47.1 47.9 48.7 49.9 51.1 12 40.7 41.4 42.5 43.2 42.2 43.6 44.4 45.2 46.4 47.7 13 37.4 38.1 39.2 39.9 39.0 40.3 41.1 42.0 43.2 44.5 14 34.4 35.1 36.2 36.9 36.0 37.3 38.1 39.0 40.2 41.6 15 31.6 32.3 33.4 34.1 33.2 34.5 35.3 36.3 31. b 38.8 16 29.1 29.7 30.9 31.6 30.6 32.0 32.8 33.8 35.0 36.3 17 26.8 21 A 28.6 29.3 28.2 29.7 30.5 31.5 32.7 34.0 18 24.7 25.3 26.5 27.2 26.1 27.5 28.3 29.3 30.5 31.8 19 22.7 23.4 24.5 25.2 24.1 25.5 26.3 27.3 28.5 29.8 20 20.9 21.6 22.7 23.3 22.2 23.7 24.4 25.4 26.6 27.9 The first line gives the dose at the maximum for 100 r of primary. DEPTH DOSE--Continued Rrci ANGHi AR I'ln.os Coil AM 00 F,Si)60f:M KrcrANf.iii.AR Fif.lds in cm X cm Dvjydi in cm ■/XV VX8 VX5 VX/W VX/5 4X20 6X6 6XS 6X10 6X15 6X20 ♦ 101.0 101.3 101.4 101.5 101.7 101.9 101.6 101.8 102.0 J02.3 102.5 0 0.5 Surface do.se 30 to 50% depending upon collimator 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 96.5 96.7 96.8 96.9 97.0 97.0 97.0 97.2 97.3 97 A 97.4 2 89.7 90.2 90.5 90.7 90.8 90.8 90.8 91.2 91.4 91.6 91.7 3 83.2 83.9 84.3 84.6 84.8 84.8 84.8 85.3 85.6 85.9 86.1 4 77.0 77.8 78.3 78.6 78.9 79.0 78.9 79.6 80.0 80.3 80.5 5 71.0 71.9 72.5 72.8 73.1 73.4 73.2 74.0 74.5 74.8 75.1 0 6.5.4 66.4 67.0 67.3 67.7 68.0 67.7 68.6 69.1 69.6 69.9 7 60.1 61.2 61.8 62.1 62.6 62.8 62.5 63.4 63.9 64.5 64.9 8 55.1 56.2 56.8 57.2 57.7 57.9 57.6 58.4 59.0 59.7 60.1 9 50.4 5 1 .5 52.1 52.6 53.1 53.4 53.0 53.8 54.4 55.1 55.6 10 46.1 47.2 47.8 48.3 48.8 49.2 48.7 49.5 50.1 50.9 51.4 1 1 42.2 43.3 43.9 44.4 44.9 45.3 44.8 45.6 46.2 47.0 47.5 12 .38.7 39.8 40.4 40.9 41.4 41.8 41.2 42.0 42.6 43.4 44.0 13 35.5 36.5 37.2 37.6 38.2 38.5 37.9 38.7 39.3 40.1 40.7 14 32.5 33.5 34.2 34.6 35.2 35.5 34.8 35.7 36.3 37.1 37.7 15 29.8 30.8 31.4 31.8 32.4 32.8 32.0 32.9 33.5 34.3 34.9 16 27.4 28.3 28.9 29.3 29.9 30.3 29.4 30.3 30.9 31.7 32.3 17 25.2 26.1 26.6 27.0 27.6 28.0 27.1 28.0 28.5 29.3 29.9 18 23.2 24.0 24.5 24.9 25.5 25.9 25.0 25.8 26.3 27.2 27.8 19 21,3 22.1 22.6 22.9 23.6 23.9 23.0 23.8 24.3 25.2 25.8 20 19.5 20.3 20.8 21.0 21.8 22.0 21.1 21.9 22.4 23.3 23.9 Depth in cm 8XS SXIO SXI5 8X20 10X10 10X15 10X20 15X15 15X20 20X20 * 102.1 102.3 102.7 102.9 102.5 103.0 103.3 103.6 104.1 104.6 0 0.5 Surface dose 30 to 50% depending upon collimator 100.0 100.0 100.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 97.4 97.5 97.7 97.7 97.7 97.8 97.9 98.0 98.0 98.1 2 91.7 91.9 92.1 92.2 92.1 92.4 92.5 92.7 92.8 93.0 3 86.0 86.3 86.6 86.8 86.6 87.1 87.2 87.5 87.7 88.0 4 80.3 80.7 81.2 81.4 81.2 81.8 82.0 82.4 82.7 83.1 5 74.8 75.3 75.9 76.2 75.9 76.6 76.9 77.4 77.8 78.3 6 69.5 70.0 70.7 71.1 70.7 71.5 71.9 72.5 73.0 73.7 7 64.4 64.9 65.7 66.2 65.6 66.6 67.0 67.8 68.4 69.2 8 59.5 60.1 61.0 61.5 60.8 61.9 62.4 63.3 64.0 64.9 9 54.9 55.6 56.6 57.1 56.3 57. b 58.1 59.0 59.8 60.9 10 50.6 51.3 52.4 52.9 52.1 53.4 54.0 54.9 55.8 57.0 11 46.7 47.4 48.5 49.1 48.2 49.5 50.2 51.1 52.1 53.4 12 43.1 43.8 44.9 45.6 44.6 45.9 46.7 47.6 48.7 50.0 13 39.8 40.5 41.6 42.3 41.3 42.6 43.4 44.4 45.5 46.9 14 36.7 37.5 38.5 39.2 38.2 39.6 40.4 41.4 42.5 43.9 15 33.9 34.6 35.7 36.4 35.4 36.8 37.6 38.6 39.7 41.1 16 31.3 32.0 33.1 33.8 32.8 34.2 35.0 36.0 37.1 38.5 17 28.9 29.6 30.7 31.4 30.4 31.8 32.6 33.6 34.8 36.1 18 26.7 27.4 28.5 29.2 28.2 29.6 30.4 31.4 32.6 33.9 19 24.7 25.4 26.5 27.2 26.2 27.5 28.4 29.3 30.5 31.8 20 22.8 23.4 24.6 25.3 24.2 25.5 26.4 27.3 28.5 29.8 34c The first line gives the dose at the maximum for 100 r of primary. DEPTH DOSE--Continued !U ci ANr.iii AR Tii lds Coj'm ' i f>0 i SD 80 CM Rl CI ANOUI.AR FiF.LDS IN CM X CM Depth in cm ■1X4 ■1X6 4X.S 4X10 4X15 4X20 6X6 6XS 6X10 6X15 6X20 ♦ 101.1 101.3 101.5 101.6 101.8 101.9 101.6 101.8 102.0 102.3 102.5 0 Surface dose 30 to .50% depending upon collimator 0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 96.8 97.0 97.2 97.3 97.4 97.4 97.4 97.6 97.7 97.8 97.8 2 90.6 91.2 91.5 91.6 91.8 91.8 91.9 92.2 92.5 92.7 92.8 3 84.7 85.5 85.9 86.1 86.4 86.4 86.5 86.9 87.3 87.6 87.7 4 79.0 79.9 80.4 80.6 81.0 , 81.1 81.1 81.7 82.1 82.5 82.7 5 73.5 74.5 75.1 75.3 75.7 75.9 75.9 76.6 77.0 77.5 77.7 6 68.1 69.2 69.9 70.1 70.5 70.7 70.7 71.5 71.9 72.5 72.7 7 62.9 64.1 64.8 65.1 65.5 65.7 65.7 66.5 67.0 67.6 67.9 8 58.0 59.2 59.9 60.3 60.8 61.0 60.8 61.7 62.2 62.9 63.3 9 53.5 54.7 55.3 55.8 56.3 56.6 56.2 57.1 57.7 58.5 58.9 10 49.3 50.5 51.1 51.6 52.2 52.5 52.0 52.9 53.5 54.4 54.8 11 45.5 46.6 47.3 47.8 48.4 48.6 48.1 49.0 49.6 50.5 51.0 12 41.9 43.0 43.7 44.2 44.8 45.1 44.5 45.4 46.0 46.9 47.4 13 38.6 39.7 40.4 40.9 41.4 41.8 41.1 42.0 42.7 43.6 44.1 14 35.6 36.6 37.3 37.8 38.4 38.7 38.0 38.9 39.6 40.5 41.0 15 32.9 33.8 34.5 35.0 35.6 35.9 35.2 36.1 36.7 37.6 38.1 16 30.4 31.3 32.0 32.4 33.1 33.4 32.6 33.5 34.1 35.0 35.5 17 28.1 29.0 29.6 30.0 30.7 31.0 30.2 31.1 31.6 32.6 33.1 18 26.0 26.9 27.4 27.9 28.5 28.8 28.0 28.8 29.4 30.3 30.8 19 24.0 24.9 25.4 25.9 26.5 26.8 26.0 26.7 27.4 28.2 28.7 20 22.1 22.9 23.5 23.9 24.5 24.8 24.0 24.8 25.4 26.2 26.8 Depth in cm 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 * 102.1 102.3 102.7 102.9 102.5 103.0 103.3 103.6 104.1 104.6 0 0.5 surface dose 30 to 50% depending upon collimator 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 97.8 98.0 98.1 98.1 98.2 98.3 98.3 98.4 98.4 98.4 2 92.7 93.0 93.2 93.3 93.3 93.6 93.6 93.9 93.9 94.0 3 87.6 87.9 88.3 88.5 88.3 88.8 88.9 89.3 89.4 89.6 4 82.5 82.9 83.4 83.6 83.4 84.0 84.2 84.7 84.9 85.2 5 77.4 77.9 78.5 78.8 78.5 79.2 79.5 80.1 80.4 80.8 6 72.4 73.0 73.7 74.0 73.6 74.4 74.7 75.4 75.8 76.4 7 67.5 68.1 68.9 69.2 68.8 69.8 70.1 70.8 71.4 72.1 8 62.7 63.4 64.3 64.7 64.1 65.2 65.7 66.5 67.2 68.0 9 58.2 58.9 59.9 60.4 59.7 60.9 61.4 62.3 63.1 64.0 10 54.0 54.8 55.8 56.3 55.6 56.9 57.4 58.4 59.2 60.2 11 50.1 50.9 52.0 52.5 51.7 53.1 53.7 54.7 55.6 56.6 12 46.5 47.3 48.4 49.0 48.1 49.5 50.2 51.2 52.1 53.2 13 43.2 44.0 45.1 45.7 44.8 46.2 46.9 47.9 48.8 50.0 14 40.1 40.9 42.0 42.6 41.8 43.1 43.9 44.9 45.8 47.0 15 37.2 38.0 39.2 39.8 38.9 40.3 41.0 42.0 43.0 44.2 16 34.5 35.3 36.5 37.1 36.2 37.6 38.3 39.3 40.3 41.5 17 32.1 32.8 34.0 34.6 33.7 35.1 35.8 36.8 37.8 39.0 18 29.8 30.5 31.7 32.3 31.4 32.8 33.5 34.5 35.5 36.7 19 27.7 28.4 29.6 30.2 29.2 30.7 31.4 32.3 33.4 34.6 20 25.7 26.4 27.6 28.2 27.2 28.6 29.4 30.3 31.4 32.6 * The first line gives the dose at the maximum for 100 r of primary. DEPTH DOSE --Continued RrcTANCui AH FiEi.ns Coiiai,t60 FSl) 100 cm RiXTANGULAR P'IELDS in cm X CM Depth in cm 4X-! 4X6 4X8 4X10 4X15 4X20 6X6 6X8 6X10 6X15 6X20 SF 101.1 101.3 101.5 101.6 101.8 101.9 101.6 101.8 102.0 102.3 102.5 0 0.5 Surface dose 30 to 50% depending upon collimator 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 lOO.O 100.0 100.0 1 97.1 97.3 97.5 97.6 97.7 97.7 97.7 97.9 98.0 98.2 98.2 2 91.4 91.9 92.2 92.4 92.5 92.6 92.6 92.9 93.1 93.4 93.4 3 85.8 86.5 86.9 87.2 87.3 87.5 87.5 87.9 88.2 88.6 88.6 4 80.2 81.2 81.7 82.0 82.2 82.4 82.4 83.0 83.4 83.8 83.9 5 74.8 76.0 76.6 76.9 77.2 77.4 77.3 78.1 78.6 79.0 79.2 6 69.7 70.9 71.6 71.9 72.3 72.5 72.4 73.2 73.8 74.3 74.5 7 64.8 66.0 66.7 67.1 67.5 67.7 67.6 68.4 69.0 69.6 69.9 8 60.1 61.3 62.0 62.4 62.9 63.1 62.9 63.8 64.4 65.1 65.4 9 55.7 56.9 57.6 58.0 58.5 58.8 58.4 59.4 60.0 60.7 61.1 10 51.5 52.7 53.4 53.8 54.4 54.7 54.2 55.2 55.8 56.6 57.0 11 47.7 48.8 49.5 49.9 ■ 50.5 50.8 50.3 51.3 51.9 52.7 53.2 12 44.1 45.2 45.9 46.3 46.9 47.2 46.7 47.7 48.2 49.1 49.6 13 40.8 41.9 42.6 43.0 43.6 43.9 43.3 44.3 44.9 45.8 46.3 14 37.8 38.9 39.5 40.0 40.6 40.9 40.2 41.2 41.8 42.7 43.2 15 35.0 36.1 36.7 37.2 37.8 38.1 37.4 38.3 38.9 39.9 40.3 16 32.5 33.5 34.1 34.5 35.2 35.5 34.8 35.6 36.3 37.2 37.7 17 30.1 31.1 31.7 32.1 32.8 33.1 32.3 33.1 33.8 34.7 35.2 18 27.9 28.8 29.4 29.8 30.5 30.8 30.0 30.8 31.5 32.4 32.9 19 25.8 26.7 27.3 27.7 28.4 28.7 27.9 28.7 29.3 30.2 30.7 20 23.8 24.7 25.3 25.7 26.4 26.7 25.9 26.7 27.3 28.2 28.7 Depth in cm 8X8 8X10 8X15 8X20 10X10 10X15 10X20 15X15 15X20 20X20 * 102.1 102.3 102.7 103.0 102.5 103.0 103.4 103.7 104.1 104.6 0 0.5 Surface dose 30 to 50% depending upon collimator 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1 98.1 98.3 98.5 98.5 98.6 98.8 98.8 99.0 98.9 98.9 2 93.3 93.6 93.9 93.9 93.9 94.3 94.3 94.6 94.6 94.7 3 88.5 88.9 89.3 89.3 89.3 89.8 89.8 90.2 90.3 90.5 4 83.7 84.2 84.7 84.8 84.7 85.3 85.4 85.9 86.1 86.3 5 78.9 79.6 80.1 80.3 80.1 80.8 81.0 81.6 81.9 82.2 6 74.2 74.9 75.6 75.8 75.5 76.3 76.6 77.3 77.7 78.1 7 69.5 70.2 71.0 71.3 70.9 71.8 72.2 73.0 73.5 74.0 8 64.9 65.6 66.5 66.9 66.4 67.4 67.9 68.7 69.3 70.0 9 60.5 61.2 62.1 62.6 62.0 63.1 63.7 64.5 65.2 66.1 10 56.3 57.0 58.0 58.6 57.8 59.0 59.7 60.6 61.3 62.3 11 52.4 53.1 54.2 54.8 53.9 55.2 55.9 56.9 57.7 58.7 12 48.7 49.5 50.7 51.2 50.3 51.7 52.4 53.4 54.3 55.3 13 45.4 46.1 47.3 47.9 47.0 48.4 49.1 50.2 51.1 52.1 14 42.3 43.0 44.2 44.8 43.9 45.3 46.0 47.1 48.1 49.1 15 39.4 40.1 41.3 41.9 41.0 42.4 43.1 44.2 45.2 46.2 16 36.7 37.4 38.6 39.2 38.3 39.7 40.4 41.5 42.5 43.5 17 34.2 34.9 36.1 36.7 35.8 37.2 37.9 39.0 40.0 41.0 18 31.9 32.6 33.8 34.4 33.5 34.9 35.6 36.7 37.6 38.6 19 29.7 30.5 31.6 32.3 31.3 32.7 33.4 34.5 35.4 36.4 20 27.7 28.5 29.6 30.2 29.3 30.6 31.3 32.4 33.3 34.4 The first line gives the dose at the maximum for 100 r of primary. Characteristics of some important (a, n) sources Sources Half-Ufe PoJ'H-LI 138.40d Poi>«-Be 138.40d RaDEF-Be 19.4y Ra-Be 1622y Em “-Be 3.825d Pu»'-Be...- 24,400y Ac“-Be 21 .8y Po»>-Be 2.93y RaBeFi 1622y Po3i»-B 138.40d Ra-B -• 1622y Po»'»-F 138.40d Po>'»-Na 138.40d Am24>-Bp 462y CmM*-Be 162.5d Mock fission >•... 138.40d Maximum neutron energy Average neutron energy Yield Mev 1.32 Mev 0.48 4.2 4.5 •3.9 n/secXlO-* curie .05 10.87 - 2.5 10.87 9. 5 13.08 15 13.08 — 15 10.74 4.5 4.6 0.064 (per g). 12.79 10.71 13.08. 2.53 B>» 6.29, B» 4.48. Bn 8.58, Bii 7.25. 2.8 0.6 7 1.4 0.2 4.45 0.04 10.87 1.6 0.4 Remarks Po-Be with a long half-life. Made by irradiat- ing radium in reactor. Proposed std source. Relatively mono- energetic. Suggested for sto- ichiometric std source. Characteristics of some important (7,11) sources Soiuces Half-life E-r E. Stand- ard yield • Actual source yield >> Mev Mev 14. 8h 2.76--- 0.83... 13 N‘a2<-f-r>20 14. 8h 2.76 - 0.22.-- 27 Qa72-|-Be 14. Ih 1.87, 2.21, 2.51--_ — _ (0.78) 5 YM-pBe - 87d 1.9, '2.8— — 0.158±0.005_. 10 1.8, 2.1---. 0.30- 0.82 Sb'24-t-Be 60d 1.7 0.024±0.003.. 19 1.6 40d 2.50 0.62- 0.3 RdTh-l-DjO.... 1.90y 2.62 (ThC") 0.197±0.010.. 9.5 • 1.2 MsTh-f-Be 6.7y 1.80, 2.62 - 0.S27±0.030.- 3.5 MsTH+DjO... 6.7y 2.62' (ThC") —. 0.197±0.010.. 9.5 " 1.2 1622y 1.69, 1.75, 1.82, 2 09, 2.20, 1.3 2.42. ‘This is the neutron yield x 10^ for a 1-curie gamma source with 1 g of target material placed 1 cm away from the gamma source. *’ 10* n/sec -curie. ® Ms-Th and Rd-Th sources emit some neutrons through (a,n) reactions with light elements in the carrier and container walls. NOTE: All photoneutron sources possess intense gamma-ray backgrounds of at least 10^ gamma rays per neutron. Characteristics of some important spontaneous fission neutron sourcets Nuclide Half-life (SF) Half-Ufe (ot decay) Alphas per fission * Neutrons per fission Neutrons per g sec IJ23J Pu“» 8X10i3y 3.5X10»y 74y 2.7y (I.IXIOH <6.5X1012, after aging, (with 1.9 yr haU-llfe 1.3X10' 1 9 3.1X10* 2.3X10» 7.0X10' U2W Pu»« 8.3X10'5y_ 4.9XlO'“y 4.5iX10«y 89.6y 1.8X10® 5.5X10* 2.0 Pu2« 1.3X10"y 6600y 1.9X10' 2. 1 Pu*« -. 7.2X10“>y 3.8X105y 1.9X105 2 3 Cm2« ... 7.2X10«y 162.5d 1.6X107 2 3 1.8X10* 1.0X10' 2.6X10>» Cm2« 1.4X10’y 18.4y 7.6X10* 2.6 CP« 66y..-J 2.2y 30 60d 60d 3.5 “The number of alphas/fission is an inverse “figure of merit.*’ A source with a low number of alphas per fission has relatively many fissions and the neutron spectrum is not likelv to be contaminated with (a ,n) neutrons. Data for tables from NBS Handbook No. 72 PERSONNEL DECONTAMINATION 00 00 42 w c S 4-( a u 'H •H o CO •r-l 0) *1—1 d) .c QJ B •i—l 42 42 "3 c s 00 CO u 00 4-J B CO u C CO dJ 03 •u OD C CO CO CO CO cfl 4-t s •i—l •r-l 4-» 4J QJ d 0) c 4-> TJ x: C !-i c 4J •H CO T3 03 d CO CO CO o T) CO CO 4s; 3 > c u dj 4J 0) *1-1 u »— J d I—l CO u -l o •r-1 .is: c 4-» 3 O CO CO •l— 1 • • CO 0) I—l (U 4-J d 3 3 W) •iH > U o > ^4 c x: CO CO •r*l CO *fH o O 3 4J 4J > 4-> 0 4J 42 s 42 •r^ d CO U *rH CO 3 44 13 CO 0) -3 d > U-l 3 •I—l OT 1— H 3 00 I—l M-l S 3 44 > c <: *H (U CO 42 *rH •l— 1 nd 4-1 3 00 u 42 CO -3 3 d B •I—l o 3 (D C o o 3 I—l cu 3 PCS 3 B CJ C/J C/1 M-l s 4-) ^4 X) CU X 3 CO o O o c 3 44 4J 4-J &0 ■54 3 CU Q • d CO C 1 >44 3 X <-4 X c CO •r4 d 3 42 4J CO d 1 i-H 'd c O CO > O a c 3 CO & •i— 1 O 44 CU •H 42 d d • B I—l o •l— 1 3 > 3 4s: 44 u 3 3 CO 3 3 3 < 42 3 nd 54 42 3 3 cr •i—i S4 O •f-i 3 cu 42 3 3 a 42 3 c 22 O 54 CO 'd 3 P 3 X •i—i S o B 4J U M-l d O t— 1 C •l— 1 44 $4 54 (2. CO 44 54 X O d 44 3 M O 44 3 *rH 4-J X CO oS O • o • o 3 O 54 CO •I—l 42 -d" > •r4 cu 42 I—l B . X 4J cu • 44 c O 00 4J X 3 3 CJ 1 d 3 1 3 4J 32 I—l 44 &. 3 3 bO •i—l . 4-J }4 O 42 •H C 44 c d 4J . cu CNJ o 3 CO 3 • CO 3 X o. 44 X) •H }4 d • O C CJ 4s: -H •i4 •i— 1 •i— 1 1— ^ X C O H B CO d CO 3 3 C O 1—^ 3 d 3 44 44 3 1-4 B a 3 1-^ o 44 x: d 42 cu •l— 1 3 4J > o 42 3 42 •H 3 •t4 3 3 o 3 a cu C •H •r4 c CO nd 44 CO 3 B B & CU 3 o 44 3 44 B B C }4 ^4 3 C 3 3 X CU O B 4-J 44 CO d O x: 3 •H CO O (U 42 C 3 3 3 2 3 •I—l O 3 o 42 3 42 CO CO *1— 1 U o X 12 CO 3 4J S 4-) I—l o 3 3 t2 6 22 3 I—l CM 4J B O 3 44 r4 O O is: !=) 4-J CO CO c CO I s 3 CO X 4-J • •1— 1 • d c 3 "Td 3 c CO o > > o u O X O •l— 1 CO 42 CO c 42 3 CO CO 3 CO CO CJ •l— 1 3 •l— 1 < >44 > CO U-l • CO •H I—l • CO •f-i CO CO CO CO O 3 CO 3 3 I—l CO 4-J 3 I—l > X 3 2 3 3 B 2 o B B •r4 d CO B o 54 CO w -Td CO W CO 3 CO 3 CO . X nd 3 (V c d > CJ 3 cO O cO M-l 42 X 42 3 U X 'V d C d 3 CO 3 CO 3 C u d 3 •r4 •l— 1 •r4 B X CO X 3 CO X CO CO 54 d 44 3 •i— 1 -X 54 54 >44 44 3 X 3 3 O 3 54. — 1 o 44 44 3 3 CL, 42 3 3 42 44 & s •' X 44 3 (2- 2 O 44 s X X 3 3 2 C C O 54 3 3 3 3 O tlO 42 54 CL. (2. 3 3 3 3 3 3 > 2 X 44 O O 3 54 •i4 3 CO CO X 42 H X 194 *Begin with the first listed method and then proceed step by step to the more severe methods, as necessary. PERSONNEL DECONTAMINATION - -Continued Q *B gir with the first listed method and then proceed step by step to the more severe methods, as necessary. PERSONNEL DECONTAMINATION --Continued (/) CO CO •l— I Q (U 4-4 1 o •t-t o • c ^3 4-1 4J B CO • x: •r4 cd C •H Cl) 0) o 4-1 G 4-1 •rH (-1 u > 4-1 =) O O cu o :3 o o (D 42 C CU > CO 4-1 c rO cjo 6 4J CO 42 o O •H CO C CO t3 4J B 4-1 cO C B •I— 1 T5 C »— 1 (U cu O 4J •H CO CO C •H CO C • V-i c CNJ CO cd B 5-1 O CO S-i o cn CO cd T— 4 Q) (D a c 0) c (U 4-> •H 1— 1 CO i“H cu CO B Q) CO C > CO d •r4 CO c CO O O •r4 cu •r^ t— < •H 4-1 4-) C/D 5 G O T) 42 CO u c •l— 1 42 > 'd 4s5 4 J • 1 O cu CO CO • d •r 4 CU •r 4 B • CO CU (U c •H IS TS Td cu G G CO Ml o •p4 cu S-I O o CO o •r 4 T5 c ><: B •H CU G • 4 -» 4-4 u (U o o B t—l 4 -) 42 4 J c CO CO • 1-4 •r 4 1— 1 cd cO CO S-i c G 4 J B •r 4 G O CO o > o •r 4 u G TG S •r 4 CO 54 54 TO •r 4 s CU G •H cu B rH CO 42 ^ G OJ M CO 54 ■i4 3: O CO o CU G B S 0 u 42 r-4 42 0 4-1 G G O B cu • B cu o 54 rH cd o cu CO CO CO d 44 d (24 CU a 44 CO G M 42 S: a G iH •r4 42 G 42 c CO o O d 42 42 o 4-^ B 54 •H (U 44 d 54 54 U > cu 54 42 •I—l 54 O Cd • G S • Cd cd •H CO 42 G cu cd cu d) o - o 42 44 • CO O CM 42 B Td •H nG 42 CO r • > 44 • 0 X iH 44 H CO Cd • 54 cd 44 Cd cu I—l B CU CO CU cu U U cd u 4J Cd 54 tG 44 TG CU CO cu I—l d cu 44 o cd 44 rH iH M CU •iH G cd 42 & G G 54 G 54 0) 44 a 54 CO CU 54 cd G cu CU I—l TO Xi 54 u d cu ♦H iH cu TO 44 O G G cd o 4-» Cd (24 cu I— I 42 G cu cd 54 r-4 o •iH •H cd CO 0 54 CO cu d •H C44 P4 42 CO 42 B d < G (2U 4J E-4 Td a t—l o (2L Pi rH CO iH 3= 4-J cd 4J TG cu CO & 0 •l— 1 B d 1 • iH CO •H 54 G CO 4J • cu •iH > G TO CO cu CO 0 d 0 cu •iH 4-J 6 • 0 0 42 B cu CO cu M •H 54 54 42 54 G 4-J CO 0 cu 4-J cu •H cu cu CO ■dd 4J iH X < > 42 •H CO CO CO CO rH cO cu cu G 0 G 0 (U > CO •H iH CO 4-1 0 M CO M_| CO G cu B G •H cd 42 cu CO 42 (22 G 4-J Pi B P4 42 cu xi 0 u cu G Q CO CO CO >4-1 • 0 CU 5^ CU G r • 54 T5 > CO CO CO CO 0 0, TO cu cu 42 42 * CO G •iH G • cO 54 42 u CO 54 CO cd 4J d 42 •H CU CU M CO cu G C/D B CO 42 G CO 0 cu G 4-) •H - B G 54 0 G cu CO •H 4-) 4H CU B cu -TG 4 c 0 54 CU CO G cn cu G 0 0 cn W Cd I I 0 4J 0 CO G CO 0 cu •H TO X 1 C/D •H •H cu CO 1 4 J 54 CO •H (U B 4-J •iH 42 > CO CU G CO 4J U-J B 3 d •H CU TO 4-J cu M CO 4J 4U U cd CO 0 cd s 54 m 0 •H X) CO CU iH d 14-1 B s C/D 54 C 4 H 14-1 CO cd 14^ J-l •H S cd 4-> 0 54 V— ✓ d M 0 cu TG iH B u T3 M G CO cu CM 0 G cd cu d M G IG" CO G cu • •iH iH G 54 0 CO G G PI I— ( • •iH cu 0 0 • 4-J • B •H cd 0 •iH 0 B u 42 CO •H B TO d vD 4U a iH cu d TO •H > c/2 cu c/2 X 4H G TO •H iH 0 G cu cu cu 0 •H 4J I— 1 Cd 0 4J G •H MH d •H d 0 0 CO 0 0 u cu 54 •H 0 d 0 cd 0 CO iH 0 tH CO cO CO CO •r4 rH CO < CU 4J CO rH CO 2 iH Ih 196 *Begin with the first listed method and then proceed step by step to the more severe methods, as necessary. PERSONNEL DECONTAMINATION- -Cont inued with the first listed method and then proceed step by step to the more severe methods, as PERSONNEL DECONTAMINATION- -Continued S o M H < 13 M H S O O H Q 1-1 C M Pi w H p. 54 CJ 3 3 3 C 3 • O •H CO Td 3 p. O 3 54 CO 6 O •H B TO 44 54 44 • 3 4-» 3 CO P, CO O E 3 3 54 3 TO 1—1 CO CO 3 4J TO * CO 3 rH 3 4-1 3 43 3 43 3 3 4J c CO O cd CO CO 3 +4 4J &0 CO CO 4J CO •H o O 3 o 3 54 CO c CO o -p E 4J 3 o B 3 o TO 3 3 o C 54 CO TO o 3 •H CO CO 3 CO 4J CO u •H 4J 4-J CO 3 c •H 1— ^ u 3 • r» 1—1 4J TO M I— 1 I— H 31 CO 3 •H 3 1— i 3 E o. C o 43 54 O 1—1 •H X CO 54 O 3 o •H CO CO p. o CO E CO 3 O < 44 3 •r^ o CJ CO 54 o u 4J CO o M-4 3 a CO IS CO 54 3 CO 1 3 3 O nd • 1 E 3 43 43 54 CO p. •rH 3 O O • 4J 54 4-1 bO CO O o 3 •r^ 4-» CO 43 54 u c O o c 3 CL, > o 3 3 S: M-4 CO o 3 •1-4 M) < •rH cr o O E LP E 44 4-J CO 4J 3 3 1— 1 4-) 4J • P, TO O CO c CO > < QJ 3 cr c Xi o QJ H C o 4-1 U c QJ O CO M-l !-i 3 wo -3 o -3 4J 0) M TO CJ • CO cn 0) C 0) i-i o u CO T3 C4-4 0) O ^4 O 3 O CO OJ CO s TO 4J (U 3 c o o •H TO 4J 0) CO *r4 54 54 0 ) c -H O O 3! C -H CO 4-> TO 4-1 CO 4-1 C4-I C C4-1 O E 3 54 0 3 3 3-3 4-1 3 O 4J 1-4 CO CCJ *H *1^ 3) > & M-l M 3 O 3 >44 54 3 CO 3 Ml 54 3 4-1 3 O CM 54 W 3 -1-4 4-1 TO 3 m 6 3 E <44 •r4 O 3 54 3 44 W CL, 3 woo 3 3 3 3 (X 3 44 I 44 54 3 3 > W 3 O 3 3 54 M4 D, 54 cyo 3 W 44 3 3 O 3 ->4 44 44 CL, TO I O t4 •H 44 O O O > 3 44 g 3 •r4 O O ^-1 O 44 O 44 44 O CO 54 O & 3 O 3 o 3 0 0 TO 44 3 44 1 — I O M) 3 3 S O 44 44 O 43 3 O O •i4 44 44 3 TO 3 3 •l— I CL, W 3 B 3 44 3 TO O -H O 54 O 3 O > 54 12 3 cO a X) U 43 C 3 cO O 4-1 O CO CO 3 3 CO TO > • 3 1—4 CO > nd • o 3 o 3 c CO E 4-1 O CO o 3 CO •1-4 •r4 54 Pi 3 4-1 p 3 1 u 3 o CO •r4 4J CO CO CO 3 1—4 CO 3 o CO 1—4 o 54 4-1 p CO o 3 44 p B 54 3 TO 3 O 3 ♦ CO 3 CO 4J 3 3 • a 1—1 o •r4 o 54 1—4 CO CO 4J p < 44 p 3 M5 3 •r^ 3 3 3 6 3 3 o 3 > 54 3 44 3 ^2 198 *Begin with the first listed method and then proceed step by step to the more severe methods, as necessary. AREA AND MATERIAL DECONTAMINATION- -Continued AREA AND MATERIAL DECONTAMINATION --Continued 200 *Begin with the first listed method and then proceed step by step to the more severe methods, as necessary. AREA AND MATERIAL DECONTAMINATION- -Cont inued o- 0) XI CL (U T3 (U (U U O V-I a c (U X methods, as necessary. AREA AND MATERIAL DECONTAMINATION--Continued I LW CO OJ i CO c •r4 nd 'V 4-» 4-» T3 l—l bO WD CO u d • - o CO d c CO CO XI 5 c 0) (U o o e IS) o > jd X CO 0) .—1 CO M zn X M C CO > CO CO —1 a (U CU O d o > • CO 1“^ CO C -W o CO d B CO CO CO CJ O -d 4J (U d • d •rH C M u CU c s o i“H u ^ CU O CO X •l—l d CO 1-^ U CO *rH U-l E •r-l Q S-i CO d o T— ^ M 4-> d CO o CU X •H CO d o l—l CU PL, Pi -u CM CJ CO c CO c "d OJ u CO u CO *r4 (U d c CO bO 4-i •i— 1 CO CO c s w 4-1 o CO c u 4-> • c CO > e o CU • d u O -TO X 1— H CO Cl CO 0 0 CU CU 0 CO M 4-1 0 4J CU CU •H • CO u d 0 6 CO > M 4-1 4J d B •rH CO d 0 U c d 4J CU •H CU d •f^ CU c B 0 CO CO X 6 TJ rQ M cO X •H d CO d d CO CO 4-1 a E •i-l M 0 CO d 4-» CU 4J CO 4J d CO O. M 0 0 d M CO CU c 0 l—l CU e 0 CU •l—l 0 CL d Q 0 c CO c M CL, X u 0 CO s 1 Ps r— 1 l—l M c U •H l—l c a CU CO d •r-l d a •r4 d l—l CU CO 4-i 4-i 1-^ d 1 bO Lc c CU CO • 0 M B •I— 1 CU •l—l CO 0 d 0 d CU r— 4 X •H CU TO 0 CM B CU CU & M & u CO • CU 0 CO •l-l 1 4J CO 0 l—l pci 0 M 4H 0 CU 0 0 CO jd 4-J •l—l l—l CL X 0 CU d d •H 4J CO M 4-i CO •l—l 4-1 • 1 — 1 4-1 CU 4-1 CL M CO l—l B 5^ X M Q 0 CO CM N 4-J Xl d 1 CM 4-4 > C X CU bO 0 a 0 d CL •H bO a- CO CU CO 0 4-> d M 4J 0 CU 0 0 •f— 1 CU H > Jd u u 1-^ M CU 4-J c e X & CU •r— M d 0 d C 4J M B CO l—l 0 0 l—l 0 bO CU d CO bO •fH CO M 4-i CU •f-l •H CO •H iu X CU CL Xl • B i-H M u 4-1 c CO CU CU c CP, X 4-J X) CL cc 4-i CO 4-J CO Td CU PC c CO CU CU 0 X •rH > M •iH CL CO d CO d CO CL d d CL, CU jd bO CO M M * • r— 1 X CL d d TO •iH CU :o CO •r" £-1 & l—l 0 d CO • c jd CU d •r4 l—l X d •iH CU • 0 TJ d Jd 0 TO CO d B 0 I— 1 CU 4-i CO M •r-l CL 4-J 0 M 0 CJ P^ 0 s C 4 /-N 0 CU CO 0 CO CU cc: • 0 CO d • 1 — 1 4J d & CU C bO CO d • 1 — 1 CU X m M r— 1 •r4 d 4-J u CO CM TO CL CO 4 J T-^ 1 — w •l—l 4-1 CM •l—l 4-i •H d M •r 4 4J CO a 4-i X TO d CU 0 T 3 M •iH CU CO d CO l—l M CO C 0 0 CU CO CO 0 u CO d CO X • 4-i CL d d CU CU CO M CO c ;d 0 CU CU 0 bO < CU e d CO CL Jd B l—l CO CL 1-^ & 1 — ^ 0 CO <: 1 — H CO u bO Cd CL CO CO CO > iLc: 1 — 1 CJ CO * CU CU /—N • a 0 4 J TO •M CO CO d d 0 C TO LM CM 0 •M •M 0 M M •rH CO -M CO Jd d d 4 J CL CU CL -M CO CO U B CU > ■M M 4 H r-H 0 0 CM CO CM -M B B 0 X 0 S CU CU CO cd cd CO • CU CO CO CO 1 CJ CU CU CU M CO 0 a 0 CU CM CO d) cO • CO > M CM CM x-s CM 0 d Li ^ r-H M CO d d CO d rv CO CO 4-1 CO 1 -H CO C CO d CO X) 0 X 0 0 d CU N CU •iH • M M 4 H -iH 4 J ■LJ ^ 0 0 d M d M nd CL CL •M 0 •iH CU CO d d CO Jd cO > CU 0 0 CL, P-, w j:; S tC xl Cb B r-s 0 CU d CU CU CU Jd M •M X) xl 6 XJ M d xl -M •rH d •iH CU 4J TO • • 0 g X •rH X s X — CO cb 0 d 0 CO 0 •H 4J u M -M M CO M B d •rH Xl 0 X 3 CO X 3 0 4J d) r — 1 4H TO 0 CO P^ io CO Jd 0 Jd •iH d l—l CJ a U CO < CJ CU •M CO Jd CL Cb 0 Jd bO CL d •iH B 4 J d d CO •iH 0 CO Td •rH 1 — H 0 CO JD CO cO TO •rH d M rO CO H < c /3 202 Begin with the first listed method and then proceed step by step to the more severe methods, as necessary. AREA AND MATERIAL DECONTAMINATION --Continued CO cn CO (U o cu c CO CO CO T) O x: 4J 0) B (U CO cu )-l o B cu x; o 4J a. cu 4J CO Xi a cu XI CO TO cu cu o o !-i CL c cu x: 4-J TO c cO TO o x: 4-J CU e TO CU 4J CO 4-J CO •H M-l CU x; 4-J xo 4J c •l— I bO cu m 203 RULES OF THUMB Alpha Particles 1. It requires an alpha particle of at least 7.5 MeV to penetrate the protective layer of the skin, 0.07 mm thick. 2. With 2rr geometry, the surface of a thick source of tuballoy will give about 2,400 alpha cpm/cm^ ; plutonium will give about 70,000 alpha cpm/pg; 16.2 g of ^^®Pu has an activity of 1 Ci. Beta Particles 19s 1. When working with Au, experience has shown that under certain conditions, the beta dose will be five times the gamma value. Therefore, only Vs of the total dose will be recorded by gamma dosimeters. 2. It requires a beta particle of at least 70 keV to penetrate the protective layer of the skin, 0.07 mm thick. 3. The range (R) of beta particles in g/cm^ (thickness in cm multiplied by the density in g/cm^) is approximately equal to the maximum energy (E) in MeV divided by 2 (i.e., R = E/2). 4. The range of beta particles in air is about 12 ft per MeV; for example, a 3 MeV beta has a range of about 36 ft in air. 5. A chamber wall thickness of 30 mg/cm^ will reduce a flux of 1 MeV (max.) betas by 30% and a flux of 0.4 MeV betas by a factor of 4 or 5. 6. The intensity of bremsstrahlung increases approximately with the energy of the beta particle and about the square of the atomic number of the absorbing material. 7. When betas of 1 to 2 MeV pass through light materials such as water, alumi- num, or glass, less than 17o of their energy is dissipated as bremsstrahlung. 8. The bremsstrahlung from 1 Ci ^^P aqueous solution in a glass bottle is about 1 mR/hr at 1 meter. 9 0 9 0 9. When the beta particles from a 1 Ci source of Sr- Y are absorbed, the bremsstrahlung hazard is approximately equal to that presented by the gamma from 12 mg of radium. The average energy of the bremsstrahlung is about 300 keV. 10. For a point source of beta radiation (neglecting self- and air-absorption) of strength Ci curies, the dose rate at 1 ft is approximately equal to 300 Ci rads/hr. The variation with energy is small over a wide range. 11. Beta-ray surface dose rates with 7 mg/cm^ filter: Source mrads/hr U slug 233 UO2 (brown oxide) 207 UF4 (green salt) 179 UOg (N03)2 • bHgO (yellow uranyl nitrate hexahydrate) Ill UO3 (orange oxide) 204 U30a (black oxide) 203 UOgFg (cliptite or uranyl fluoride) 176 NagU207 (soda salt or sodium diuranate) 167 204 Gamma Rays 1. The air-scattered radiation (sky-shine) from a 100 Ci ®°Co source place 1 ft behind a 4-ft-high shield is about 100 mrads/hr at 6 ft from the outside of the shield. 2. Within ±20% for point source gamma emitters with energies between 0.07 and 4 MeV, the exposure rate (R/hr) at 1 ft is 6CE, where C is the number of curies and E the energy in MeV. Neutrons 1. An approximate HVL for 1-MeV neutrons is 1.26 in. (3.2 cm) of paraffin; 2.72 in. (6.93 cm) for 5-MeV neutrons. Miscellaneous 1. The activity of any radionuclide is reduced to less than 1% after 7 half- lives (i.e., 2 ^ = 0.8%). 2. For material with a half-life greater than six days, the change in activity in 24 hours will be less than 10%. 3. For ^°Sr-^°Y in equilibrium, 5,000 cpm is equal to 1 mrem/hr when using a beta-gamma probe with a 30 mg/ cm^ tube. 4. There is 0.64 mm of radon gas in transient equilibrium with 1 Ci of radium. 5. The exposure rate from fission products at any time (t) can be represented by: R/unit time = I't where I is the exposure rate at unit time, and t is in the same time units. Taken from: Los Alamos Handbook of Radiation Monitoring, LA-1835 (3rd ed.); Health Physics Handbook - General Dynamics, OSP-379 (April 1963); and AERE, HP/L23. Maximum 'permissible body burdens and maximum permissible concentrations of radionuclides in air and m water for occupational exposure Radionuclide and type of decay Organ of reference (critical organ in boldfacel Maximum permissible burden in total body g(/ic) Maximum permissible concentrations For 40 hour week For 168 hour week*^ (MPC)„ mc/cc (MPC)„ /xc/cc (MPC)„ pc/cc (MPC) mc/cc ,H3(HTO or H50)(/3-) /Body Tissue.. 103 0.1 5X10-3 0.03 2X10-3 (Total Body.. 2X1Q3 0.2 8X10-3 0.05 3X 10 3 2X10-3 4X10-4 l V A kJ AVy 11/ 6 C>nco 2 )(r) (Fat 300 0.02 4X10-3 8X10-3 10-3 (Sol) j Total Body. . 400 0.03 5X10-8 0.01 2X10-3 [Bone. 400 0.04 6X10-3 0.01 2X10-3 f Tmmpirsinn^ Total Body. .. . 5X10-5 10-5 (/?-) /Bone. .. . _ 6 5X10-4 7X10-S 2X10-4 2 X 10-8 Total Body 30 3X10-3 4X10-7 9X10-4 10-7 (Sol) »^ [B-, 7, e-) iCe'« a, B~, 7) s!Pm*<'(a, 5-) q(jic) (MPC)^ fiC cc (MPG), fiC cc MPC}^ fiC cc (MPC? mc cc [Bone 4 ■3X io-< 3X10-= 10-5 10-5 (Soli - GI (LLD. 10-5 3X10-" 4X 10-5 9x 10-= iTot^ Bodv 40 2x10-^ 2X10-' 7X10-5 6x10-5 ' Insol /Lung 4X10-= 10-= (GI LLI _. sxio-^ 10-' 3 X 10-5 5X10-= [Bone 2 4X10-* 3 X 10-10 io-« 10-'» (Sol) 1 Total Bodv 20 10-5 9X10-10 4X10-5 3X10-'* IgI (LLI), -10-^ 3X10-1 5X10-5 10-‘ (Insol) /Lung 5X10-i 2X10-5 \GI (LLI 10-’ 2X10-1 4X10-5 6X 10-= ,GI LLI. 2X10-5 4X10-1 6X10-5 10-' Total Body 20 3 10-1 1 4X10-- Bone. . 30 4 2X10-1 2 6X10- (Sol) Kidnev_ 30 4 2X10-1 2 6X10- Liver 40 6 3X10-1 2 9X10-= .Spleen 40 7 3X10-1 2 10-- TLung 3X10-= 10 • GI LLI. . 2x10-5 3X10-1 6x10-5 10-- /GI LLI 3X10-5 6X10-1 10-1 2X10-' Total Body 40 10 5X10-1 4 2X 10-- Liver 60 20 7X10-1 6 3X 10-- (Sol; Kidnev 60 20 8X10-1 6 3X10-' Bone 80 20 9X10-1 *7 3X10-- .Spleen 80 20 10-5 3X10-' (Insol) /Lung, 10-1 3X 10-' iGI LLI 3X10-5 5X10-1 10-5 2X 10-- i fGI LLI 4X10-^ 8X10-5 10-5 3X10-5 (Sol) j Kidnev 3 0.01 10-1 4X10-5 5X10-5 |Bone. 10 0.04 5X10-1 0.01 2X10-- (Total Bodv 10 0.06 7X10-1 0.02 3X10-- (Insol) /Lung _, 6X10-5 2X10-5 (GI “LLI - 3Xl0-‘ 6X10-5 10-5 2X10-5 1 Thvroid 0. 7 6X10-5 9X10-5 2X10-5 3X10-5 (Sol) \ Total Bodv 50 5X10-5 8X10t1 2X10-5 3X10-' (GI (LLI) 0.03 7X10-5 0. 01 2X 10-5 (Insol) (GI (LLI ;Lung 2X10-5 3X10-1 3X10-1 6X10-5 10-' 10-' /Total Body 30 4X10-* 6X10-5 2X10-5 2X10-' Liver 40 5X10-< 8X10-5 2X10-5 3X10-5 Spleen 50 6X10-* 9X10-5 2X10-5 3X10-5 Muscle 50 7X10-^ 10-1 2X10-5 4X10- ^oOl; Bone 100 10-5 2X10-1 5X10-5 7X10- Kidnev 100 10-5 2X10-1 5X10-5 8X10- Lung 300 5X10-5 6X10-1 2X10-5 2X 10-’ .GI (SI). 0.02 5X10-5 8X10-5 2X10-5 (Insol) '^Lung 10-5 5X10-5 \GI LLI ,. 10-5 2X10-1 4X10-5 8X 10-* /"Gf LLI. -. 3X10-’ 8X10-5 10-5 3X 10- = Bone, 5 0.2 10 = 0.08 3X10-5 (Sol) (Liver, _ 6 0.3 10-5 0.1 4X10-5 Kidnev,, 10 0.5 2X10-5 0.2 7X 10-5 .Total Bodv,, ,,, 20 0.7 3X10-5 0.3 10- (Insol) /Lung 6X10-5 2a 10-5 IGI (LLI) 3X10-‘ 6X10-5 10-5 2X 10-5 /GI (LLi;, ,, , 6x10-5 io-» 2X 10-5 5 • 10 = iBone 60 1 6X10-5 O.o 2 • 10 • (Sol) ( Kidnev 200 4 2X10-- 2 7 ■ 10- j Total Bodv 300 7 3X10-1 2 10 • (Liver 300 8 4X10-1 3 10 -• (Insol) Lung 10-1 3 • 10- IGI LLI 6X10-5 10-' 2X 10-5 4 • 10 ■ 207 Maximum permissible body burdens and maximum permissible concentrations for radionuclides in air and in water for occupational exposure — Continued Maximum Organ of reference permissible Radionuclide and type of (critical organ in burden in decay boldface) total body 9 (mc) 3Ta'82 (r, y) 77lr>»2 (0-, y) 79Au‘«« (|3-, -y) 86Rn222t(“. |3, 7^ ggRa^^e y'j 92 U 235 (a, I3~, 7 ) 2 U «8 (a, 7, e-) 94 Pu ”9 (a, y) (Sol) (Insol) (Sol) (Insol) (Sol) (Insol) (Sol) (Insol) (Sol) (Insol) (Sol) (Insol) (Sol) (Insol) GI (LLI)_._ Liver I Kidney Total Body. Spleen 3one /Lung \GI (LLI)___ |G 1 (LLlj... Kidney < Spleen Liver vTotal Body. Lung GI (LLI)... { GI (LLI)... Kidney Total Body. Spleen Liver fGI (LLI)... \Lung Lung. (Bone < Total Body. IgI (LLI)... /Lung \GI (LLI)... (GI (LLI)... I Kidney I Bone [Total Body. /Lung IGI (LLI)... [GI (LLI)... I Kidney I Bone [Total Body. (Lung \GI (LLI)... (Bone Liver ( Kidney |GI (LLI)... [Total Body. /Lung IGI (LLI)... 7 20 20 30 50 6 7. 8 20 20 30 60 80 0.1 0.2 0.03 0.06 0.4 5X10- 0.06 0.5 0.04 0.4 0.5 0.4 Maximum permissible concentrations For 40 hour week (MFC). ixc/cc 10 - 0.9 2 2 4 6 10-3 10-=* 4X10-^ 4X10-^ 5X10-^ 0.01 10 - 2X10- 0.07 0.1 0.2 0.3 10-^ 4X10-’ 6X10-7 10-^ 9X10-< 8X10-< 0.01 0.01 0.04 8X10- 10-3 2X10- 0.01 0.04 10-3 10 -< 5X10-< 7X10-< 8X10-< 10-3 8X10-^ (MFC). mc/cc 3X10-7 4X10-8 8X10-8 9X10-8 10-7 3X10-7 2X10-8 2X10-7 3X10-7 10-7 10-7 2X10-7 4X10-7 3X10-8 2X10-7 3X10-7 3X10-8 4X10-8 8X10-8 10-8 2X10-7 6X10-7 3X10-8 3X10-i‘ 5X10-“ 3X10-7 5X 10-“ 2X10-7 2X10-7 5X10-78 6X10-;'« 2X 10-8 10-10 10-7 2X10-7 7X10-“ 6X10->» 2X10-8 10-10 2X10-7 2X10->3 7X10-'3 9X10->3 2X10-7 10 -“ 4X10-“ 2X10-7 For 168 hour week** (MFC). |ic/cc 4X10-« 0.3 0.7 0.7 1 2 4XlO-< 4X10-1 10-^ 10-^ 2X 10-^ 4X10-^ 4X10- 5X10-1 0.02 0.04 0.07 0.1 5X10-1 10-7 2X10-7 5X10-1 3X10-1 3X10-1 4X10-3 5X10-3 0.01 3X10-1 4X10-1 6X10-1 5X10-3 0.01 4X10- 5X10-5 2X10-1 2X10-1 3X10-1 3X10-1 3X10-1 (MFC)„ mc/cc 9X10-8 10-8 3X10-8 3X10-8 5X10-8 9X10-8 7X10-8 7X10-8 9X10-8 4X10-8 5X10-8 6X10-8 10-7 9X10-8 6X10-8 10-7 9X10-7 2X10-8 3X10-8 4X10-8 8X10-8 2X10-7 10-8 10 -“ 2XlU-“ 10-7 2X10-“ 6X10-8 6X10-8 2X10-18 2X10-'» 6X10-‘» 4X10-“ 5X10-8 8X10-8 3X10-“ 2X10-'“ 6X10-‘» 5X10-“ 6X10-8 6X10-'3 2X10-'3 3X10-“ 6X10-8 5X10-“ 10 -“ 5X10-8 tThe daughter isotopes of Rn**® and Rn^^J are assumed present to the extent they occur in unfiltered air. For all other isotopes the daughter elements are not considered as part of the intake and if present must be considered on the basis of the rules for mixtures. 208 Maximum permissible concentration of unidentified radionuclides in water, (MPCU)ur values*, for continuous occupational exposure Limitations of water* If no one of the radionuclides Si^. I'“, I‘=«. At^", Ra“^, Ra^^S Ra“«, Ra^, Ac^s Th^, Pa“>, Th“, and Th-nat is present, then the (MPCU)k^ is If no one of the radionuclides Sr»«, P^®, Pb®'“, Po^'®, Ra“®, Ra“®, Ra^^*, Pa“', and Th-nat is present, then the iMPCU),r is If no one of the radionuclides Sr®®, P“, Pb^'®, Ra®“, and Ra-®* is present, then the (MPCU)ur is 3x10-® 2x10-® 7X10-® * If neither Ra®®* nor Ra®“ is present, then the (MPCU)u^ is... If no analysis of the water is made, then the (MPCU)ir is, •Each (MPCU), value is the smallest value of (MFC), in table 1 for radionuclides other than those listed opposite the value. Thus these (MPCU), values are permis- sible levels for continuous occupational exposure (168 hr/wk) for any radionuclide or mixture of radionuclides where the indicated isotopes are not present (i.e., where the concentration of the radionudide in water is small compared with the (MPC)r value for this radionuclide). The (MPCID, may be much smaller than the more exact maximum permissible concentration of the material, but the determination of this (MPC)^ requires identification of the radionuclides present and the concentration of each. ••Use one-tenth of these values for interim application in the neighborhood of a controlled exposure area Maximum permissible concentration of unidentified radionuclides in air, (MPCU)a values*, for continuous occupational exposure Limitations If there are no a-emitting radionuclides and if no one of the /3-emitting radionuclides Sr®®, P®®, Pb®‘®, Ac- Pa®®®, Pu®^", and Bk®-*® is present, then the (MPCLF)a is ptc/cm® of air** Ra®®», 10 -® If there are no a-emitting radionuclides and if no one of the /3-emitting radionuclides Pb®'°, Ac®®®, Ra®®*, and Pu®^‘ is present, then the (MPCU)q is 10-10 If there are no a-emitting radionuclides and if the /S-emitting radionuclide Ac®®® is not present, then the iMPCUlais 10-" If no one of the radionuclides Ac®®®, Th®®®, Pa®®', Th®®®, Th-nat, Pu®®®, Pu®®®, Pu®-”*, Pu®‘'®, and Cf®^® is present, then the (MPCU)ais 10-'» If no one of the radionuclides Pa®®*, Th-nat, Pu®®®, Pu®^, Pu®^, and Cf®^® is present, then the (MPCU)a is 7xl0'** If no analysis of the air is made, then the (MPCU)a is 4x10-'® •Each iMPCU)o value is the smallest value of (MPC)a in table 1 for radionuclides other than thoee listed opposite the value. Thus these 'MPCU>« values are penm*- sible levels for continuous occupational exposure (168 hr/wk) for any radionuclide or mixture of radionuclides where the indicated isotopes are not preaent 0.03 MeV 1 Beta rays and electrons; <0.03 MeV 1.7 Thermal neutrons 3 Fast neutrons 10 Protons 10 Alpha rays 10 Heavy ions 20 STANDARD MAN The information on pages 212, 213, and 214 is from data supplied by Dr. Isabel H, Tipton, University of Tennessee, Knoxville. The data on pages 215, 216, and 217 is taken from sources too numerous to reference. Inquiries regarding specific details should be addressed to the Radiological Health Handbook Committee. NOTE: Numbers may differ from ICRP Committee II Report. Those using this information on Standard Man should be aware of the ef- forts of the ICRP Subcommittee on Standard Man. Reports of this Committee should be noted and pen and ink changes made on pages 212 through 217, as necessary. WEIGHTS OF ORGANS AND TISSUES OF STANDARD MAN Tissue or Organ Mas s (grams) Total Body a) Adipose tissue 15000 21 Subcutaneous* 7500 11 Other separable* 5000 7.1 Interstitial 800 1.1 Yellow marrow (added with skeleton) 1700 2.4 Adrenals (2)* 14 0.02 Aorta* 100 0.14 Contents (blood)* 190 0.27 Blood 5500 7.8 Plasma 3200 4.6 Erythrocytes 2300 3.2 Blood vessels* (not including aorta and pulmonary) 200 0.29 Contents (blood)* 2500 3.6 Cartilage 2000 2.9 Skeletal cartilage 1700 2.4 Non-skeletal cartilage* 300 0.43 Dense connective tissue 4000 5.7 Tendons and ligaments* 2000 2.9 Other connective tissue 2000 2.9 Eye s (2) * 15 0.02 Lenses (2) 0.5 -- Gall bladder* 10 0.01 Contents (bile)* 63 0.09 G.I. tract* 1200 1.7 Esophagus 50 0.07 Stomach 150 0.21 Intestine 1000 1.4 Smal 1 500 0.71 Upper large 250 0.36 Lower large 250 0.36 Contents of G.I. tract* (food plus digestive fluids) 1000 1.4 Hair* 20 0.03 Heart* 300 0.50 Contents (blood)* 390 0.56 Kidneys (2)* 310 0.44 Larynx* 15 0.02 Liver* 1800 2.6 Lungs (2)* 1000 1 .4 Parenchyma 580 0.83 Pulmonary blood 480 0.61 Lymph nodes* 250 0.36 212 WEIGHT OF ORGANS AND TISSUES OF STANDARD MAN- -Continued Tissue or Organ Mass (grams) Total Body (%) Miscellaneous* (by difference) 590 0.84 Soft tissue (nasopharynx, etc.) 240 0.34 Fluids (synovial, pleural, etc.) 350 0.50 Muscle (skeletal)* 28000 40.0 Nails* 10 0.01 Nervous system - central Brain* 1400 2.0 Spinal cord* 30 0.04 Contents - cerebrospinal fluid* 120 0.17 Pancreas* 100 0.14 Parathyroids (4)* 0.12 -- Pineal* 0.2 -- Pituitary* 0.6 -- Prostate* 16 0.023 Salivary glands (6)* 85 0.12 Skeleton* 10000 14 Bone 5000 7.2 Cortical 4000 5.7 Trabecular 1000 1.4 Red marrow 1300 1.9 Yellow marrow 1700 2.4 Cartilage 1700 2.4 Blood 300 0.43 Skin* 4900 7.0 Epidermis 500 0.71 Dermis 4400 6.3 Hypodermis (see adipose tissue) 7500 -- Spleen* 180 0.26 Teeth* 46 0.065 Testes (2)* 60 0.085 Thymus* 20 0.028 Thyroid* 16 0.023 Tongue 70 0.10 Tonsils (2)* 4 0.006 Trachea* 15 0.021 Ureters (2)* 16 0.023 Urethra* 2 0.003 Urinary bladder* 45 0.064 Contents (urine)* 102 0.14 Total Body 70000 100 *Sum total body (including the second column figures under "Mass" and "Total Body"). 373-062 0 - 70 -15 STANDARD MAN: TOTAL BODY CONTENT FOR SOME ELEMENTS Element Amount (grams) Percent of Total Body Element Amount (grams) Percent of Total Body Oxygen 43000 61 Bromine 0.20 0.00029 Carbon 16000 23 Lead 0.12 0.00017 Hydrogen 7000 10 Copper 0.072 0.00010 Nitrogen 1800 2.6 Aluminum 0.061 0.00009 Calcium 1000 1.4 Cadmium 0.050 0.00007 Phosphorus 720 1.0 Boron <0. 048 0.00007 Sulfur 140 0.20 Barium 0.022 0.00003 Potassium 140 0.20 Tin <0.017 0.00002 Sodium 100 0.14 Manganese 0.012 0.00002 Chlorine 95 0.12 Nickel 0.010 0.00001 Magnesium 19 0.027 Gold <0.010 0.00001 Silicon 18 0.026 Molybdenum <0.0,093 0.00001 Iron 4.2 0.006 Chromium <0.0066 0.000009 Fluorine 2.6 0.0037 Cesium 0.0015 0.000002 Zinc 2.3 0.0033 Cobalt 0.0015 0.000002 Rubidium 0.32 0.00046 Uranium 0.0007 0.000001 Strontium 0.32 0.00046 Beryllium Radium 0.000036 3.1X10“^^ — 214 SPECIFICATIONS FOR STANDARD MAN Adult Man Adult Woman Child 10 years Infant 1 year Newborn Weight (kg) 70 58 -- -- 3.4 Length (cm) 170 160 -- -- 50 Surface Area (cm^) 18000 16000 -- -- 2200 Specific Gravity 1.07 1.04 -- -- -- Total Body Water (ml/kgW) 600 500 -- Extracellular Water 260 200 -- -- -- Intracellular 340 300 -- -- -- Total Blood Volume (ml) 5200 3900 Red Cell Volume (ml) 2200 1350 -- -- -- Plasma Volume (ml) 3050 2500 -- -- -- Total Blood Weight (g) 5500 4100 Red Cell Weight (g) 2400 1500 -- -- Plasma Weight (g) 3100 2600 -- -- -- Total Adipose Tissue (kg) 15 19 -- Subcutaneous 7.5 13 Sparable 5.0 4 -- -- -- Yellow Marrow 1.7 1.4 -- -- Interstitial 0.8 0.6 -- -- -- Total Connective Tissue (g) 5100 4100 Cartilage 2500 2000 -- -- Tendons and Fascia 850 700 Other 1700 1400 -- -- -- Total Fat (kg) 13.5 15 Nonessential 12 13.8 -- -- Essential 1.5 1.2 -- -- -- Hair (g) 20 300 -- -- -- Nails (g) 3 3 -- -- -- Skeletal Muscle (kg) 28 17 -- -- -- Total Skin (g) 4900 3500 Epidermis 500 400 -- Dermis 4400 3100 -- -- -- Hypodermis 7500 13000 -- -- -- Resting Metabolic Rate 17 16 25 35 (cal/min-kg) Oxygen Inhaled (g) 920 640 -- -- -- Carbon Dioxide Exhaled (g) 1000 700 -- -- -- Total Lung Capacity (liters) 5.6 4.4 Functional Residual 2.2 1.8 Vital 4.3 3.3 Dead Space 0.160 0.130 -- -- Minute Volume (liters/min) Resting 7.5 6.0 4.8 1.5 0.5 Light Activity 20 19 13 4.2 :. 5 SPECIFICATIONS FOR STANDARD MAN--Continued Adult Man Adult Woman Child 10 years Infant 1 year Newborn Total Air Breathed (liters) 22800 21120 14784 4700 780 8 hr. working (light) 9600 9120 6240 3500 (10 hr) 90 (1 hr) 8 hr. nonoccupational 9600 9120 6240 -- -- 8 hr. resting 3600 2880 2304 1200 (14 hr) 690 (23 hr) Dietary Intake (g) Protein 95 66 -- -- -- Carbohydrate 390 270 -- -- -- Fat 120 85 -- -- Water in Diet 1000 700 -- -- -- Water in Fluid 1700 1200 -- -- -- Water in Oxidation Elements 300 200 -- Carbon 300 210 200 -- -- Hydrogen 350 245 230 -- -- Nitrogen 15 10 10 -- -- Oxygen 2600 1800 1700 -- -- Milk Consumption (ml/day) 300 200 -470 -1000 -- Fecal Components (g) Weight 135 -- 85 24 -- Water 105 -- 66 19 -- Solids 30 -- 19 5 -- Ash 17 -- 6 1 -- Fats 5 -- 4 3 -- Nitrogen 1.5 -- 1 0.3 -- Other Substances Elements 6.5 — ” 8 0.7 Carbon 6.7 -- 4.2 1.2 -- Hydrogen 13 -- 8.6 2.5 -- Nitrogen 1.5 -- 1.0 0.3 -- Oxygen 98 -- 62 17 -- Urine (g) Volume (ml) 1400 -- 1000 450 -- Specific Gravity 1.001- 1.030 - “ « - 1.002- 1.019 ” “ Solids 60 -- 47 19 19 Urea 22 -- -- -- -- "Sugars" 1 -- -- -- -- Carbonates Elements 2 “ “ ■■ Nitrogen 15 -- 11 5 -- Hydrogen 160 -- no 50 -- Oxygen 1300 -- 970 420 -- Carbon 5 3 0.5 216 SPECIFICATIONS FOR STANDARD MAN- -Continued Adult Man Adult Woman Child 10 years Infant 1 year Newborn Water Balance (tnl/day) Total Gains 3000 2100 2000 Fluid Intake 1950 1400 1400 -- -- Milk 300 200 450 -- Tap Water 150 100 200 -- -- Others 1500 1100 750 -- -- In Food 700 450 400 -- -- By Oxidation in Food 350 250 200 -- -- Total Losses (tnl/day) 3000 2100 2000 Urine 1400 1000 1000 -- -- Feces 100 80 70 -- -- Insensible Loss 850 600 580 -- -- Sweat 650 420 350 -- -- ') : lltf ir f SECTION IV ELEMENTS IN “TABLE OF ISOTOPES” (The numbers in parentheses refer to the Decay Scheme pages) Element Sym. Z Page Element Sym. Z Page Actinium Ac 89 ... 365 Mercury Hg 80 ... 347 (404) Aluminum A1 13 237 Molybdenum Mo 42 ... 272 (394) Americium Am 95 ... 373 Neodymium Nd 60 ... 310 Antimony Sb 51 ... 290 Neon Ne 10 ... 235 Argon Ar 18 ... 241 (384) Neptunium Np 93 ... 371 Arsenic As 33 ... 256 Neutron n 0 ... 231 Astatine At 85 ... 359 Nickel Ni 28 ... 250 (389) Barium Ba 56 ... 303 (400) Niobium Nb 41 ... 270 (393) Berkel ium Bk 97 ... 376 Nitrogen N 7 ... 233 Beryl 1 ium Be 4 ... 232 Nobel ium No 102 ... 379 Bismuth Bi 83 ... 354 (406) Osmium Os 76 ... 339 Boron B 5 ... 232 Oxygen 0 8 ... 234 Bromine Br 35 ... 259 Palladium Pd 46 ... 279 Cadmium Cd 48 ... 283 Phosphorus P 15 ... 238 (383) Calcium Ca 20 ... 243 (385) Platinum Pt 78 ... 343 Californium Cf 98 ... 376 Plutonium Pu 94 ... 372 (409) Carbon C 6 ... 233 (382) Polonium Po 84 ... 356 (406) Cerium Ce 58 ... 307 (401) Potassium K 19 ... 241 (384) Cesium Gs 55 ... 301 (399) Praseodymium Pr 59 ... 309 (402) Chlorine Cl 17 ... 240 Promethium Pm 61 ... 312 Chromium Cr 24 ... 246 (386) Protactinium Pa 91 ... 368 (408) Cobalt Co 27 ... 249 (388) Radium Ra 88 ... 364 (406) Copper Cu 29 ... 251 (390) Radon Rn 86 ... 361 (406) Curium Cm 96 ... 374 Rhenium Re 75 ... 337 Dysprosium Dy 66 ... 321 Rhodium Rh 45 ... 277 Einsteinium Es 99 ... 377 Rubidium Rb 37 ... 263 (391) Erbium Er 68 ... 325 Ruthenium Ru 44 ... 276 (395) Europium Eu 63 .. 315 Samarium Sm 62 ... 313 Fermium Fm 100 ... 378 Scandium Sc 21 ... 244 Fluorine F 9 ... 235 Selenium Se 34 ... 257 Francium Fr 87 ... 363 Silicon Si 14 ... 238 Gadolinium Gd 64 ... 317 Silver Ag 47 ... 281 Gallium Ga 31 ... 253 Sodium Na 11 ... 236 (382) Germanium Ge 32 ... 254 Strontium Sr 38 ... 265 (392) Gold Au 79 ... 345 (405) Sulfur S 16 ... 239 (384) Hafnium Hf 72 ... 332 Tantalum Ta 73 ... 334 Helium He 2 231 Technetium Tc 43 ... 274 Holmium Ho 67 322 Tellurium Te 52 ... 293 Hydrogen H ■ 1 ... 231 (382) Terbium Tb 65 ... 318 Indium In 49 ... 285 (396) Thallium T1 81 ... 350 Iodine I 53 297 (396) Thorium Th 90 ... 366 (408) Iridium Ir 77 ... 340 (403) Thulium Tm 69 ... 326 Iron Fe 26 ... 248 (386) Tin Sn 50 288 Krypton Kr 36 261 (391) Titanium Ti 22 ... 245 Kurchatovium* Ku 104 ... 380 Uranium U 92 ... 369 (407) Lanthanum La 57 306 (400) Vanadium V 23 245 Lawrencium Lr 103 380 Wolf ramt w 74 335 Lead Pb 82 352 (406) Xenon Xe 54 299 (398) Lithium Li 3 231 Ytterbium Yb 70 328 Lutecium Lu 71 330 Yttrium Y 39 267 (392) Magnesium Mg 12 236 Zinc Zn 30 252 (390) Manganese Mn 25 247 (386) Zirconium Zr 40 ... 269 (393) Mendelevium Md 101 379 * Suggested name, t Also called tungsten T able of Isotopes The material in this section is taken from the book, "Table of Isotopes," by C. M. Lederer, J. M. Hollander, and I. Perlman, 6th edition, published by John Wiley and Sons, Inc., New York, 1967. Table I is an exact reproduction of Table I of the above publication. The bibliography referred to is not reproduced here. Table II, as presented here, consists of specially selected decay schemes. Permission to reproduce this material was given to the U.S. Department of Health, Education, and Welfare by the authors and the publishers, John Wiley and Sons, Inc. This permission is gratefully acknowledged. Further reproduction without permission of the authors and/or publishers is prohibited. IiiinKluctioii 221 TABLE I. RADIOISOTOPE DATA 'I'liis table displays all radioactive and stable nuclei arranged according to atomic number with increasing mass number for each element. The criterion for the s('leefion of data on each radioactive isotope has been that of identifying it in terms of its rate and mode of decay, principal radiations, and how it is prepared. 'I he data are arranged in six columns, each of which recei\'cs comment below. Note on references. References to the original pub- lications are coded according to the first author and the year of publication. Example: the symbol AagP57 permits the appropriate journal reference to be found readily in the alphabetical listing in the bibliography. If the reader is already familiar with the work, he will recognize this symbol as referring to a 1957 paper of P. .\agard and co-workers. Column 1— Isotope. The symbols here give the iso- topic assignments in usual form. Stable or long-lived naturally occurring isotopes are indicated by under- lining. The superscript m following the mass number refers to a metastable, or isomeric, state which has a sufficiently long half-life to be investigated indepen- dently from its ground state. Likewise, the designa- tions 7/1 1 and 7712 refer to several metastable states of a nucleus. W'hen it is not established which of several isomers is the ground state, each isomer is referred to by the same symbol without the m; for example, Eu'*’" ( 12.6 h) and Eu’®“ ( y ). Generally, isomeric states are included in Table I if their half-lives exceed ==^1 s; exceptions are made for a few chemically or genetically identified isomers of somewhat shorter half-life. The half-lives of many short-lived excited states have been measured because of their importance to nuclear structure. They are not listed in Table I as isomeric states but can be found in Table II, under the listing of the ground state of the appropriate isotope. The historical names for the naturally occurring ac- tivities Th-®-, U-’®, U-®®, and their descendents are giv'en in Column 1 beneath the isotopic assignment. Column 2— Half-life. An attempt has been made to list the most accurate value first, usually inferred from the stated precision. Unless otherwise stated, the value listed is the total half-life, which is the entity measured when the decay is followed. When a nucleus has more than one mode of decay, the percentage of each mode is given in Column 3. An exception is made for those heavy nuclei that have measurable spontaneous-fission rates. The appro- priate spontaneous-fission half-life is listed in Column 2 and designated by the symbol fi/ 2 (SF). In a number of cases no radioactivity has been observed, although sought, and the lower limit of the half-life is listed for the mode of decay looked for (/? = /? decay, /3/3 = simultaneous emission of two /3 particles, EC = electron capture, a = a decay ). If there is no special designation after the listed half-life, it may be assumed that the determination was made by direct decay measurement. ( For the very short lifetimes the timing is done electronically rather than mechanically.) For indirect half-life determina- tions, the methods are described by the following symbols: sp act ( -f mass spect) Determination of disintegration rate of a sample containing a known weight of the active substance (mass spectographic analysis of the sample to correct for other isotopes present), genet Decay of parent substance, followed by the periodic removal of a decay product which can be measured, (genet = genetic relation). yield Measurement of radioactivity from a sample con- taining a number of atoms calculated according to the expected yield of the reaction by which it was produced. est In a few instances (a emitters) the half-lives are esti- mated from the energies of the measured radiations, delay coinc Several isotopes are short-lived products of longer lived parents. Those whose half-lives are in the millisecond range or shorter were measured by re- cording the time-interval distribution between the emissions from the parent substance and the daugh- ter product. Column 3— Type of decay. Because many classes of data are included in this column, the entry denoting type of decay is preceded by the special symbol for radiation,^'. When the mode of decay is enclosed in square brackets, that mode is inferred or assumed, not directly measured. When independent modes of decay have been measured, the branching ratios are entered as percentages. Symbols used are f3 Negative /?-particle (negation) emission /?+ Positive /J-particIe (positron) emission EC Orbital electron capture a Alpha-particle emission IT Isomeric transition (decay from an excited inet.i- stable state to a lower state) SF Spontaneous fission. Listings are made here only if the branching is about \% or more. For other^ the 222 TABLE I. RADIOISOTOPE DATA partial half-lives for spontaneous fission are entered in Column 2. n Neutron emission from excited states promptly fol- lowing decay to those levels. Entry is made in conjunction with the emitter, p Proton emission from excited states promptly fol- lowing ^ decay to those levels. Entry is made in conjunction with the fj emitter. Wherever experimenters have searched for and failed to find a particular mode of decay, the indica- tion is, for example, “no Experimental limits are given but no limits predicted from theory. Limits of detection in cases in which no radioactivity has been observed are listed in Column 2 in terms of a lower limit on the half-life. Among the a emitters in the heavy element region closed decay cycles may almost always be employed to determine whether a nucleus is ^8 stable without resort to specific experimental evidence. Those that are known to be ji stable are designated by the entry y8 stable (cons energy) to indicate that the principle of conservation of energy underlies the calculations. Percent abundance. The isotopic abundances listed are on an “atom percent” basis and refer to the ele- ments as they exist in the earth’s crust. Some of the light elements have variations in composition outside the accuracy of determination. For these elements ranges are given with references to the publications in which the variations are discussed. Particular values are also given for some specific sources of the speci- mens analyzed. Isotopic mass. The atomic masses of all species measured by mass spectrometry or calculated from reaction energies are entered in the form of the mass excess, A(=M-A); the unified mass scale ( A(C^^) = 0 ) is employed. It will be noted that these mass excess values are in units of million electron volts. Most of the data were taken from the compilation of Mattauch, Theile, and Wapstra (MTW), which should be con- sulted for the accuracy attached to them. The experi- mental decay energies of radioactive species on which many of their masses are based may be found as Q values on the decay schemes in Table II. Cross sections. It is not possible to list all known reaction cross sections in a table such as this, but values are given for the neutron-capture reaction (o-c) and for neutron-induced fission (o-f) in units of 10“^* cm^ (bams). Most of the cross sections shown are taken from a compilation by D. T. Goldman and M. D. Goldberg (GoldmDT64) and refer to neutrons with velocity 2200 meters/sec. The reader is cautioned to note that many nuclei have strong resonances in the epithermal region, and because “thermal” reactors con- tain epithermal neutrons in the irradiation positions the effective cross sections for certain nuclei can be larger than those indicated here. Our symbol refers to that part of the capture reaction in which fission does not result. Unless other- wise stated, o-c applies to the (n, y) reaction. For some light nuclei the principal reaction with thermal neu- trons may be (n, p) or some other reaction. Wherever such a reaction is referred to, it is so indicated. Column 4— class; identification; genetic relationships. Class. The degree of certainty of each isotopic assign- ment is indicated by a letter according to the following code: A Element and mass number certain B Element certain and mass number probable C Element probable and mass number certain or prob- able D Element certain but mass number not well established E Element probable and mass number not well estab- lished F Insufficient evidence G Probably in error. These “ratings” should not be read as levels of con- fidence in the experiments but rather as an indication of the limitations of the experiments as they relate isotopic assignments to the radioactive properties dis- cerned. In some instanees a simple cross bombardment ( production of an isotope in two or more ways ) results in an unambiguous assignment. In others much more elaborate experiments are insufficient. Among the fac- tors that can limit the certainty of an assignment based on its means of production are targets of mixed iso- topic composition, low cross sections, the possibility of isomerism, similarity of properties to other isotopes, and absenee of knowledge of neighboring isotopes. Identification. The means by which the isotopic as- signments were established are tabulated next. In gen- eral, several references are combined, and among them the first refers to the discovery of the isotope (except for classical natural radioactivities). Indica- tion of the experimental methods used in making the various assignments may be had from the following symbols: chem Chemical separations establishing the chemical identity (atomic number) of the isotope, genet Established decay relationship (by chemical or other means) with another isotope whose mass as- signment is known. excit Refers broadly to energy considerations in the pro- duction of the isotope, some of which are ( 1 ) excitation-function or yield experiments to estab- lish the nuclear reaction which produced the isotope; (2) limitation of products formed by limiting the energy of bombarding particles; (3) making use of a calculated Q value; (4) in a few instances use of fission-yield data to limit mass assignments. cross bomb Arrival at an assignment by producing the isotope in different ways. TABLE I. RADIOISOTOPE DATA 223 fi-capt Key evidence supplied by production with slow neutrons from which it is usually inferred that the (ri, y) reaction was observed. sep isotopes The use of target elements enriched or de- pleted in a particular isotope. mass spect Mass number determined by mass spectrom- etry. decay charac Identification of predicted decay properties such as deciiy energy or energy-level pattern, genet energy levels Energy levels of daughter nucleus agree with those from decay of another isotope whose isotopic assignment and mode of decay are known or with levels observed in nuclear reactions, atomic level spacing Atomic number of decay product established by measuring the characteristic energy differences between internal-conversion electron lines from a particular y transition converted in different shells. critical abs Identification of the atomic number of the decay product by critical absorption of X-rays accom- panying the decay process. Genetic relationships. Below the designation of how the isotope was identified are listed specifically those genetic (or parent-daughter) relations established by chemical or physical separation and radiochemical characterization of the daughter atoms. Among other things, this list also gives the reader some warning that radiations from decay products may be present with those from the parent. Column 5— Major radiations. The purpose of this list is to acquaint the reader at a glance with the prin- cipal radiations associated with each isotope. The ra- diations shown will often be sufficient to identify the isotope. Because it is the purpose here to delineate what is actually seen when a particular isotope is encountered, the X-rays and annihilation radiation (0.511-MeV y rays from the annihilation of positrons, designated by the symbol y±:), are indicated if they are prominent in the electromagnetic spectrum. If essentially all the decays proceed by positron emission, the notation 0.511 (200%, y±) will appear. (Several per cent of the positrons annihilate in flight, which means that a corresponding number of photons will not have 0.511 MeV energy. ) The notation “L X-rays” is used only when K X-rays are absent or very weak. Similarly, conversion electrons are listed if they are prominent in the electron spectrum. Auger electrons (electrons emitted in the de-excitation of atomic levels) are not listed explicitly; they will always accompany the emission of X-rays. Continuous /?" or spectra are usually represented by the endpoint of the highest energy beta group followed by the notation “max.” When the highest energy group is of low intensity, so that a spectrometer of low resolving power ( such as a scintillator ) would also detect the presence of a con- tinuous spectrum with a lower endpoint energy, this is also indicated. Thus the notation 1.176 max (7%), 0.514 max” means that there is a continuous spectrum with endpoint 1.176 MeV and 7% intensity, but the major portion of the I3~ spectrum ( which may be com- posed of one or more beta groups) has an endpoint energy of 0.514 MeV. Decay products can often give rise to radiations that soon become prominent, and this is indicated by the notation “daughter radiations from. . .” so that the reader will look up the radiations that arise from these sources. The data in this column are derived from the references listed in Table II. Quantities enclosed in square brackets are calculated or inferred, not measured. The term “major radiations,” as used here, requires some explanation. In each of the three general cate- gories of radiation, a particles, /? particles and elec- trons, and y rays and X-rays, we have listed the most prominent radiations, even though they may be of relatively low intensity. For example, with an a emitter may be listed a y ray of only 10“®% intensity relative to the a intensity if that y ray is the most intense in its energy range. Conversion electrons are listed accord- ing to the actual energies of the electron lines and not in terms of the transitions that give rise to the lines. The intensities of radiations when expressed as per- centages without other qualifications refer to percent- ages of the total decay events. Another way of ex- pressing relative intensities is also sometimes employed. A number following the dagger ( f ) symbol is the rela- tive intensity for the particular mode of decay beside which the f appears. The terms “doublet” and “complex” are used to in- dicate y rays which would be unresolved or incom- pletely resolved by instruments of moderately low resolving power such as scintillators. It is not indicated when an electron line is complex. Because of conver- sion in diflFerent atomic shells and subshells, many of the electron lines listed in Column 5 are complex. The reader is referred to Table II for a more de- tailed account of radiations accompanying the decay of each isotope and for references to the original liter- ature. Column 6— principal means of production. The methods for producing each isotope selected for in- clusion here are those that have given the highest yield and those that permit greatest isotopic purit\. 'I hesc listings will serve principally as references to the orig- inal literature in which important aspects of thr prep- arations such as experimental conditions, yields, atul purity of product are discussed. The methods fall into three main categories, lor ordinary nuclear reactions in which a target isotope is bombarded with charged particles or neutrons the usual system of abbreviations is employed. For e\.mi pie, to make Pu‘®g tl e reaction \p '- ( in r illy has the percent of branching shown for l a* h nnxlt but other decay infonnation is given only for tin ni< ii or modes pertinent to the mass number under. on sideration. Energy levels in general. The hori/onf.d lin* • tl. .t represent energy levels have the etien;i. of. n entered above them in boldfaced diaraeti r> ne.ir t!.' 373-062 0 - 70 - 16 228 TABLE II. DETAILED NUCLEAR LEVEL PROPERTIES right-hand extremity. Energies are in units of million electron volts. The spins and parities are in similar characters and similarly placed on the left. We have not entered other descriptive quantum numbers even when they have been well established, but members of different rotational bands (for nuclei in the major regions of nuclear deformation) are slightly displaced horizontally. Assignments appearing within paren- theses are consistent with available information but not determined uniquely. Sometimes when only two choices are possible both are entered. Uncertain levels and transitions are indicated by dashed lines. Half-lives of excited states are entered at either end of the level or, in a few cases, on the level, in large characters. The abbreviations have the following meanings: ms = 10^® sec, — 10'® sec, ns = 10“® sec, ps = 10“^® sec. Beta-decay processes. Q values for |8-decay modes are entered where convenient below the isotopic sym- bol. Those for ^ decay are designated Q^-, whereas for both positron decay and orbital electron capture they are given as (^ec- The latter designation elim- inates the ambiguity as to whether two electron masses have been added to the endpoint energy of the posi- tron spectrum. Thus all Q values have their exact defi- nition as the energy difference between the ground states of parent and daughter systems. Values given without other designation are based on decay data. Q values followed by the abbreviation calc were calcu- lated from ( a ) masses established in a variety of ways, (b) closed decay cycles or decay-reaction cycles, or (c) ratios of electron capture from different shells for EC decay or EC/p* ratios. Those values followed by the symbol est were estimated from theoretical con- siderations of a or jS systematics. The intensities of P~, p*, and electron-capture groups indicated near the arrows showing the transitions are given as percentages of total transitions {%) or as rela- tive intensities (f). To the right of the intensities are shown the log ft values {italic characters). Tie lines to the transition arrows are used for clarity, p branch- ings given are not necessarily directly measured. In fact, in a majority of cases they are inferred from y-ray and conversion-electron data. In some cases close-lying states are populated by p groups that cannot be resolved; the arrow then ter- minates at a bracket spanning these levels. An arrow that terminates away from all levels indicates that information is not available on the primary states populated. Alpha decay. Q values represent the total a-decay energy which includes the recoil energy. The symbols calc and est have the same meaning as they have when applied to p decay. The decay scheme for an a emitter of mass A + 4 is given along with the level diagram for mass A which includes the « daughter. The a-emitting parent is shown on this diagram as a line above its isotopic assignment (in smaller characters than those used for the mass A isotopes); a transitions are indicated by double-line arrows. The intensities are given as per- centages of the total a-decay events. Adjacent to the intensity values are “hindrance factors” {italic char- acters ). Because the meaning of this term may not be widely known, it is explained here. By means of a single normalizing lifetime the half-life for the ground- state transition of any even-even a emitter may be calculated rather accurately by using simple one-body a-decay theory. The hindrance factor for such a transi- tion is defined as unity. Almost all other transitions have half-lives longer than those given by this cal- culation. The factor by which the actual half-hfe ex- ceeds that calculated is termed the “hindrance factor.” All hindrance factors given on the decay schemes were calculated by Helen Michel ( MicH66 ) from the one- body spin-independent equations of Preston (PresM47); the reader is referred to these papers for details. They serve a function similar to that of the log ft value for P decay in that further demands are placed on the theory to explain the relative retardation from some adopted standard. Gamma-ray transitions. Special note should be taken of the system employed for indicating intensities of y-ray transitions (vertical lines). Because the array of energy levels will be populated differently by the dif- ferent radioactive modes that feed them, it is cumber- some to give intensities on a single diagram which relate to decay events of each parent substance. The intensities shown ( numbers printed diagonally in light characters ) are relative values for the y-ray ( photon) de-excitation of the particular level above which they appear and sum to «=I00 for each level. Occasionally such numbers are calculated from conversion-electron intensities, which is then indicated by placing them in parentheses. Absolute photon intensities of some y rays in nuclei that can be fed only by one radioactive parent are given to the left of the transition arrow with a % sign. Intensities of y rays and conversion electrons expressed in other ways will be found in conjunction with the parent substance in the tabular data accom- panying the decay schemes. Multipolarities of the transitions are entered on the vertical to the left of the transition arrow or above the arrow, following the energy. The energies of the y transitions are given in bold- faced characters beside the intensities or immediately above the arrows when no intensity data are listed. Energies of the first excited state to ground-state tran- sition are omitted. An asterisk following the energy of a y ray signifies that coincidence work (usually) has shown the existence of more than one y ray of ap- proximately the same energy. Consequently, the reader should search for other y rays of that energy in the level diagram. Table I Radioisotope data Half-life — type of decay — isotopic abundance — atomic mass — neutron cross- section (capture and fission) — class (assignment rating) — means of identifica- tion — genetic relationships — major radiations — means of production 231 Type of decay ( *•* ); — Ivtiitpc / A luir lire % abundance; Mass excess (A^M-A). McV (C"=0); Thermal neutron Class; Identibcacion; Genetic relationships i Major radiations: approximate energies (MeV) and intensities Principal means of produaion cross section (47), barns 1 n*' 11.7 m (SosA59, p" (ChadJ35, SneA50) ^ ! A recoil nuclei, conservation P' 0. 78 max fission, (d, a), So»AS8, So8A39a, ProkYb^) A 8.0714 (MTW) of momentum (ChadJ32) observation of (n, a) reaction Be^(a,n), H^(d.He^) 1 Z 8 m ( Robs J 5 1 ) (FeaN32, HarkW33) Be '{Y, n) (photons from m (HamcMSba) others (SncA50) parent (SneA50, RobsJBO) electron generator) ,h‘ % 99.9852 (Lake Michigan J water) ; 99.9842 to 99.9877 (other sources (BegF59a) 99.984 9 to 99.9861 (KirI51) A 7.2890 (MTW) pC / A Half life Type of decay (•••); % abundance; Mass excess (A=M-A), MeV (C’^=0); Thermal neutron cross section (C7), barns 1 ! 1 t Class; Identification; ' Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 0,0186 s (MarqAbZ) A p (MarqA62) no n, lim 0.3% (PosA65) 16.562 (MTW) 1 1 B excit (HubbE53, NorE56) excit, genet energy levels (MarqA62) P’ 1 Y 1 13.44 max 3.68 (7%) B^^(t,p) (MarqA62) 6^'' 0. 127 s (HardJ65a) A [P^]i P» [2a] (HardJ65a) 29.0 (CerJ66) B excit, cross bomb (HardJ65a) P a 8.2 (60%). 1.1 (40%), both peaks broad [0.05, 1.6 (broad peak, with 2.90 level of Be®) ] B^°(p, 2n) (HardJ65a) b“(p, 3n) (HardJ65a) c"> 19.48 9 (EarL62) 19.3 8 (BartiF63) 19.1 a (SherrR49) A (SherrR49) 15.66 (MTW) A chem, sep isotopes (SherrR48, SherrR49) P" Y 1.87 max 0.511 ( 200%, Y*), 0.717 (100%), 1.023 ( 1.7%) B^‘^(p,n) (SherrR48, SherrR49) c“ 20.34 m (KavT64) 20.4 m (Fo 1K62, SmiJ41) 20.5 m (SolA41. Pc rlmM48, ChrisDSO) 20. 1 m ( ArnS58) 20.3 m (MartiW52) others (KunD53, PoolM 52, SiegK44a, DicksJ51. Patj65) A 99+%, EC(K) 0.19% (ScoJ57a) 10.648 (MTW) A excit (CranH34) chem, excit (BarkW3 9) 0. 97 max 0.511 (200%, y"^) B^^(p,n) (BarkW39) B^°(p, Y) (CranH34a, BarkW3 9) B^°(d,n) (CocJ35, YosD35, FowW36) N^‘*(p, a) (BarkW39) % A cr c 98.892 (limestone CO^) (NierASO) -0 0.0034 (GoldmDT64) % A cr c 1.108 (limestone CO^) (NierASO) 3.125 (MTW) 0.0009 (GoldmDT64) c'" 5730 y (GodH62) 5745 y (HugE64, MannWBSl) 5680 y (01sl62) 5568 y (LibW55) (all values by sp act) others (WatD6l, EngeA50, JonWM49, MillWWSO, ManoG51, HawR49, ReidA46, HawR48, NorLr48, YafL48a, CaswR54) A p' (KameM40) 3.0198 (MTW) A chem, cross bomb, excit (RubeS41) _ P V 0. 156 max_ average p energy: 0.045 calorimetric (JenkG52) no Y N*“*(n,p) (RubeS41, LibW55) 2.5 s (NelJB64) 2.25 s (DouR 56) 2.4 s (HudE50a) A p" (HudE50) 9.873 (MTW) A excit, sep isotopes (HudESO) genet energy levels (WarbE65) P' Y 9.82 max { 32%), 4.51 max (68%) 5.299 (68%) C*^(d,p) (HudESO, HudESOa, AlhuDr'^ ) 0.74 s (HinS61a) A [p‘], n (HinS61a) 13.69 (MTW) C excit, decay charac (HinS6la) C^‘‘(t,p) (H1-.S61. 0.01095 s (FishT63) 0.0110 s (PeteRW63) 0.0125 s (AlvL49a) A p"^, 3 q (A1vL50) P"^ 100%, 3a 3.0% (MayT62. GlasN63) 17.36 (MTW) A excit, sep isotopes (AlvL49a) genet energy levels (MayT62, WilkD63a, GlasN63, PeteRW63) P" Y a 16.4 max 0.511 (200%, Y*), 4.43 (2,4 o) 0.195 (3%), broad distribution to «3 MeV C*^(p.n) (AlvL4". AlvLSO) b'°(H< *.n| (F-t KV,b 9.96 m (EbrX65, ArnS58, DaniH58, DaniH57b) 10.05 m (Fo 1K62, BormM65, ChurJ53) 10.08 m (WUkD55) 9,93 m (WardAG39a) A p"^ (CranH34) 5.345 (MTW) A excit (CuriI34, CranH34) Y 1. 20 max 0.511 (200%, Y*) B *^( a, n) ( -■ iril > 4. Ellir,!, R : I, c‘^:d...: : i H.’.fL. Ya • FomW h. J • "(P.- : ■ * -p. Yl : . J % A cr 99.635 (NierA50) 2.8637 (MTW) (n, p) 1.81 (GoldmDT64) ! ii j — — ■ 234 Isotope Z A Half-life Type of decay ( ••• ); % abundance; Mass excess (A=M-A),MeV (C^=0); Thermal neutron cross section (t7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production % A .! ., 26m A1 6.37 s (Freej65, Freej62a) 6.28 s (MullT58a) 6.74 s (MihM58) 6.5 s (KatzLSla, HasR54, ArnS58) 6.7 s (HunS54a, Chur J53) others (FrickG63, WhiM3 9, AllaH48, PerlmM48, Wa£H48) A P'^ (Fris034) -11.982 (LHP, MTW) A excit (Fris034) cross bomb (Hube043, BradHu48) i j P" Y 3. 2 1 max 0.511 (200%, Y*) N.»‘ ' i i. ( i i 23b Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A),MeV (C’^=0); Thermal neutron cross section (tJ), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production IjAI % A .(41) Si^®(Q, n) (ElliD41. ElliD41a. KinL40) 240 Isotope Z A Half-life Type of decay ( ); % abundance; Mass excess (A=M-A),MeV (C”=0); Thermal neutron cross section (O’), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 16® 87. 9 d { FlyK65a) 86.4 d (CoopR59) 87.2 d (SelH58) 89 d (WyaE6l. CaliJ59) 87 d (HendR43) 88 d (LeviH40, KameM41) others (SerL47b, C 00 IR 39, MauW49, RudG52) A P (LibW3 9) -28.847 (MTW) A chem, excit (AndeEB36a) chem, cross bomb, excit (KameM41) sep isotopes (KameM42) Y 0. 167 max average p” energy: 0.0488 calorimetric (ConnR57, HovV64) no Y S®^(n, Y) (SerL47b) Cl®^(d, a) (KameM41) si^ % A cr c 0.014 (BradP56) 0.017 (meteoritic sulfur) (MacnJ50a) -30.66 (MT'W) 0. 14 (GoldmDT64) 5.07 m (ElliJ59) 5.04 m (BleE46) others (ScaR58) A p' (ZunW45) -27.0 (MTW) B chem, excit, cross bomb (ZimW45, BleE46) P" Y 4. 7 max (10%), 1,6 max (90%) 3,09 (90%) S®®(n,Y) Cl®^(n, p) (BleE46, ZunW45, ScaR58) 2.87 h (NetD58) A p" (NetD58) - 26.8 (MT'W) B chem, genet (NetD58) parent Cl^^, not parent Cl®®"’ (NetD58) P" Y 3. 0 max ( 5%), 1. 1 max 1.88 (95%) daughter radiations from Cl^^ Cl®^(a, 3p) (NetD58) J701 0.306 s (GlasN53) 0.32 s (BrecS54) 0.28 s (TyrH54) others (Lei056) A p'*', a =0.01% (GlasN53) -12.8 (MTW) B excit, genet energy levels (GlasN53, GlasN55, TyrH54) P" Y 9. 9 max 0.511 (200%, Y*), 2.24 (70%), 4.29 (7%), 4.77 (14%) S®^(p, n) (GlasN53) Cl” 2.53 s (MullT58a) 2.9 s (■WallR60) 2.4 s (WhiM41) 2.8 s (HoaJ40, SchelA48) others (VasiSS62c, BolFSl, TyrH54) A P'*' (WhiM41) -21.01 (MTW) A excit (HoaJ40, WhiM41) P" Y 4. 55 max 0.511 (200%, V*), 2.9 (0.3%) S®^(d,n) (HoaJ40, SchelA48) S®®(p, n) (WhiM41) Cl'4 1.56 s (Freej65. Janej6l) 1.61 s (MihM58) 1.53 s (KUR54) others (StahP53, ArbW53a, ScaR58) A p"^ (StahP53a, ArbW53) -24.45 (MTW) A genet (ArbW53, StahP53a) excit (Freej65) daughter Cl®^’’" (ArbW53a) P" Y 4.46 max 0.511 (200%, Y*) daughter Cl^^^ (ArbW53a) P^^(a,n) (JaneJ6l) Ci 34 m 31.99 m {EbrT65) 32.40 m {GreeD56} 32.5 m (HinN52a) 33.2 m (WafH48) 33.0 m (PerlmM48) others (ScaR58, TohT60, SagR36, BranH38) A p"^ =50%, IT =50% (ArbW53, StahP53a) -24.31 (LHP, MTW) A chem, excit (Fris034, SagR36) parent (ArbW53a) P^ e Y 2.48 max 0. 142 Cl X-rays, 0.145 (45%), 0.511 (100%, Y*), 1.17 (12%), 2.12 (38%), 3.30 ( 12%) 34 daughter radiations from Cl P®®(a, n) (Fris034, RideL37a, BranH38) Cli! % A 75.53 (BoydA55) 75.79 (ShieW62) 75.4 (NierA36) Cl^^/Cl^"^ variation <0.2% (OweH55) -29.015 (MTW) 44 (GoldmDT64) Cl” 3,08 X 10^ y sp act + mass spect (BarthR55) 2.6 X 10^ y sp act, yield (WriH57) 4.4 X 10^ y sp act (WuC49) others (SerL47b) A : p. 242 Isotope Z A Half-life Type of decay ( ); % abundance; Mass excess (A=M-A),MeV (C"=0); Thermal neutron cross section ((J), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 19^ 7.71 m (EbrT65) 7.67 m (BormM65) 7.7 m (HurD37, RideL37a, GreeD56) others (RamsM47, PerlmM48, SalG63, PhiE65a) A p”*" (HurD37) -28.79 (MTW) A chem, cross bomb (HurD37, HendW37) d V 2. 68 max 0.511 (200%, Y^^), 2.170 (100%) Cl^^(a, n) (HurD37, RideL37a, HendW37, RamsM47) Ca^°(d, a) (HurD37) K38m 0.95 s (Janej61, StahP53b) 0.94 s (LindKHbO, KliR54) 0.97 s (MihM58) A p'*' (StahP53, StahP53b) no IT (GoldmD62) -28.66 (LHP, MTW) C excit (StahP53, StahPS3b, KURS4) 5. 0 max 0.511 (200, Cl®®(a, n) (LindKH60, Janej61) K®®(Y,n) (StahP53b, KliR54, GoldmD62) 40 Ca (d, a) (JaneJ63. MicS65, HasY59) id! % 93.22 (KenB60) 93.08 (NierASO) others (WhiFS6, ReuCS6, ReuC52, CookK43) A -33.803 (MTW) (T c 2.0 (GoldmDT64) id! 1-26 X 10*^ y assuming (|3 ) = 1.42 X 10^ y and P7(P" -1 EC) = 0.89 ‘l/2 1.415 X 10^ y (LeuH65a) 1.42 X 10® y (GleL61) 1.37 X 10® y (BrinGA65, KonoS55) 1.45 X 10® y (MNaiA56) 1.47 X 10® y (KellWH59) 1.48 X 10® y (FleD62) % p“ 8 9%. EC 11%, p”^ 0.0010% (MNaiA56, EngeD62) p" 8 9.5%, EC 10.3%, p'*' 0.00013% (LeuH65a) Others (MNaiASS, IngMSOb, GrafTSl, SutASS, SpierFSO, SawGSO, CecMSO, FauWRSO, HouFSO, MousuAS2, ShilHS4, WasGSS, AldLS6, WasG54, RusRS3, ShilHS4a, WetG56) 0.118 (KenB60, ReuCS2, ReuC56, WMFS6) 0.119 (NierASO) A chem (ThomJOS, CamN06) chem, mass spect (SmyW37) p p" V 1.314 max 0.483 max Ar X-rays, 1.460 (11%) 1.35 X 10® y (SutA55) Others (WetG56, SawG50, HouFSO, SmaB50, GooMLSla, GrafT48, FloyJ49, StouR49, SpierFSO, FauWRSO, DelCSl. MNaiA55) sp act of 1 .460 V: (WetG57, BackeG55a, BurcP53, AhrL48, SutA55, FauWRSO, HouFSO, SawG49, SpierFSO) sp act of EC (K): A (T c -33.533 (MTW) 70 (GoldmDT64) (HeiJ54) id! % 6.77 (KenB60) 6.91 (NierASO) A -35.552 (MTW) O’ c 1.2 (GoldmDT64) 12.36 h (Merj62) 12. S2 h (BurcPS3) 12.4 h (SiegK47c, KahBS3, MackJS9, HurD37) 12. 5 h (WriHS7, MonaJ62, SinWSl) A p- (KuriF36) -35.02 (MTW) A chem, n-capt (AmaE35) chem, cross bomb (HevG3S, HevG36) mass spect (AndeGS4) daughter Ar*^^ (KatcS52) p- Y 3. 52 max 0.31 (0.2%), 1.524 (18%) K‘^^(n, Y) (AmaE35, HurD37, SerL47b) K« 22.4 h (OveR49, AndeG54) 22.0 h (LindqTS4) A p" (OveR49) -36.S8 (MTW) A chem, excit (OveR49) mass spect (AndeG54) P" Y 1.82max(l%), 1.2 max (3%) 0.83 max 0.220 (3%), 0.373 (85%). 0.39 (18%, doublet), 0.59 (13%), 0.619 (81%), 1.01 (2%) 40 Ar (al means of production 17.5 • (KuroTM) ¥ A p- (KuroT64) -36.3 (MTW) B chem, sep isotopes, excit (KuroT64) P V 6. 1 max (1%), 4.1 max 2.0 (84%), 2.6 (15%) Ca‘*®(Y. p) (KuroT64) 0. 173 • (HardJMa) 0. 170 • (ReeP64) ¥ A [p‘^], p {HardJ64a, ReeP64) -13.3 (ReeP64, MTW) C excit, decay charac (ReeP64, Hardj64a) p 3. 10 K®^(p, 3n) (HardJ64a) 40 Ca (p, d2n) (HardJ64a) Ar®®(He®, 2n) (ReeP64) C4 0.66 s (C11J57) A p'^ (C11J57) -22 (MTW) C excit, decay charac (CliJ57) y 0.511 [200%, 3.5 [daughter radiations from Ca^°(Y. 2n) (CUJ57) c»^’ 0.87 a ( LindKH60) 0.86 a (MihM58) 0.88 a (KiaOSS) 0.90 a (KliR54) othera (WallR60, SumR53. BraaR53, Hube043, BagJ64) •aft A p"^ (Hube043) -27.30 (MTW) B excit (Hube043, MElhJ49) y 5.49 max 0.511 (200%. Y*) K®^(p. n) (Kis058. WallR60) Ca‘*°(Y, n) (MihM58, Wa£H48, Hube043, MElhJ49, KUR54) % A 7x 10^® y Sp act (DobE59) others (BeliV58, JonJWSZ, MCarJ55, FremJSZ, DobE57, AwsM56) % A IOpC Z A — lijlf-lifc J — — Type of decay ( ^ ); % abundance; Mass excess (AsM-A), MeV (C”=0); Thermal neutron cross section (CT), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion — 1.72 m (Kantj63b) 1.7 m (ChilC63) other! (KochD63, MoriHSSa) no 23 m activity (KantJ63b. KoehD63) A p" (MoriH55a) -45.0 (MTW) C excit (MoriH55a) excit, sep isotopes (KoehD63) P V [ 3. 6 max 0.520 (100%), 1.12 (100%), 1.55 (100%) Ti^°(n, p) (KoehD63, ChUG63, MoriH55a) Ca‘^®(t, n) (ShidY64a) ^ 50m Sc 0.35 a (KarrM63a, KantJ63b) V A IT, no p, lim 10% (KarrM63a) -44.7 (LHP, MTW) C excit, sep isotopes (KarrM63a‘ Y 0.258 daughter radiations from Sc^^ Ti^“(n, p) (KarrM63a) Ca^®(t, n) (ShidY64a) Ti'" 22 0.090 s (ReeP64) A [p"^], p (ReeP64) -15.9 (ReeP64, MTW) C excit, decay charac (ReeP64) P 2.3 (t 8), 3.05 (T 17), 3.68 (t 16). 4.12 (T 4), 4.64 (1 50), 5.30 (T 5) 4n Ca. (He ,2n) (ReeP64) 0. 56 8 ( Janej6l) 0.58 8 (TyrH54) other8 (SchclA48, VasiSSbl) A p'*^ (JaneJbl) -29.3 (MTW) c excit (SchelA48) excit, decay charac (JaneJ6l) 5. 8 max [0.511 (200, y"^)] Ca^°(a, n) (SchelA48. JaneJ6l, VasiSS63) Ti-*-* 48 y (MorelP65) 46 y (WingJ65) others (HuiJ57) A EC (SharpRA54) -37.66 (MTW) A chem, genet (SharpRA54, HuiJ57, DilL63) 44 parent Sc, not parent Sc44m (sharpRA54, DilL63, HuiJ57) Y e [Sc x-rays], 0.068 (90%), 0.078 ( 98%) 0.065, 0.073 44 daughter radiations from Sc Sc‘^^(p, 2n) (SharpRA54, MorelP65) Sc^^(d, 3n) (HuiJ57, WingJ65) 3.09 h (KunDSOa) 3. 10 h (RudG52) 3.05 h (TPogM50) others (AlleJS41, PouA59) A p'*', EC (KunDSOa) -3 9.002 (MTW) A chem, cross bomb, excit (AlleJS41) mass spect (AndeG54) p" Y 1.04 max Sc x-rays, V*[l70%], 0.718 (0.4%), 1.408 (0.3%) Sc^^(p, n) (AlleJS41, TPogM50, KunD50a) Sc^®(d, 2n) (AUeJS41, TPogM50) ^■46 % A sp act (MNaiA6l) others (GloR57a, HeiJ55, CohS52, BaumR56) % A Cl>pC / A Half life Type of decay ); % abundance; Mass excess (A?M-A),McV (C’==0); Thermal neutron cross section (£7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production Z7.9 d (SchumR56, ClcCM, LyoWSZ. WriH57) 27.9 d (KafP56) 27.5 d (SalS65) ¥ A EC (BradH45b, WalkH40a) no (BradH45b, KerB49, LyoW52) -51.447 (MTW) A chem, excit, cross bomb (WalkH40a) daughter Mn^^ (BurgWSO) Y e V x-rays, 0.320 (9%) 0.315 Cr^°(n, Y) (SerL47b, WalkH40a) % 83.76 (WhiJ48) A -55.411 (MTW) ), 1.28 (25%o), 1.45 (75%>) Cr^°(p, n) (SutD59) xi 51 Mn 45.2 m (KoesL54) 44.3 m (BurgWSO) 44 m (NozM60) others (MillDR48, LivJ38d) ¥ A p'^ (LivJ37a), [EC] -48.26 (MTW) A chem, cross bomb (LivJ37a, LivJ38d) chem, genet (BurgWSO) parent Cr^^ (BurgWSO) P^ Y 2. 17 max 0.511 [ 194%., Y*], 1.56 (?), 2.03 (?) Cr^°(d, n) (LivJ38d, BurgW50) Cr^°(p, Y) (DubL38. DelL39) XX 52 Mn 5.60 d (BurgW54) 5.69 d (KafP56) 5.72 d (BackoE55) V EC 66%, p"^ 34% (KoniJ58c, KoniJ58a) EC 71%, p'^ 29% (RemL63, WilsRR62) others (GooW46, SehR54) A chem, excit, cross bomb (LivJ37a, LivJ38d) P" Y 0. 575 max Cr x-rays, 0.511 (67%,, Y*), 0.744 (82%.), 0.935 (84%.), 1.434 (100%») Cr^^(p, n) (HemAHO) Cr^^(d, 2n) (Pe*W-i6*. KoniJSSa) A -50.70 (MTW) 52m Mn 21.1m (JuliaJ59a) 21.3 m (HemA40) 22. 1 m (KayG65) ¥ A p'^, IT 2% (KatoT60), [EC] -50.32 (LHP, MTW) A chem (DarB37) chem, excit, cross bomb (LivJ37a, LivJ38d) daughter Fe^^ (MillDR48) P" Y 1. 63 max 0.383 (2%«), 0.511 (193%., Y*), 1.434 (100%o) daughter Fe^^ (MillDR48. JullaJ^4a) XX 53 Mn 1. 9 X 10^ y geochemical method (KayJ65) =2 X 10^ y yield (ShelR57, calc from WilkJR55, DobW56a) ¥ A (T C EC (WilkJR55) -54.683 (JohnCH64, MTW) = 170 (GoldmDT64) B chem, decay charac (WilkJRSS) Y Cr X-rays Cr^^(p. n) (WtlkJR ' ■ Cr^^(d, n) (DobW XX 54 Mn 303 d (MartiWH64) 291 d (BackoE55) 313 d (WyaE6l) 278 d (SchumR56) 290 d (KafP56) 300 d (WriH57) others {LivJ38d, SuwS53, SalS65) ¥ A EC (AlvL38) no no p (LivJ38d, DeuM44) -55.55 (MTW) A chem, excit, cross bomb .{lvivJ37a, LivJ38d) Y e Cr X-rays, 0.835 ( 100%) 0.829 Fe^^(d.a) (l.ivjiau, DeuM44) V*'(a.n) • Cr'*(d. '.I (LivJ - ’ 1 r‘^(p. r.) (D-.kl 4 > 248 Isotope Z A Half-life Type of decay (••• ); % abundance; Mass excess (A=M-A), MeV (C'^=0); Thermal neutron cross section (t7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion 55 25^" % A (T C 100 (SamM36a, WhiF56) -57.705 (MTW) 13.3 (GoldmDT64) \A Mn 2.576 h (BarthR53a, BarthR53b) 2.574 h (LocE53) 2. 586 h (BisG50) others (LivJ38d, BonaG64, BieJ64a, SalS65) A p" (AmaE35) -56.904 (MTW) A chem, n-capt (AmaE35) daughter Cr^^ (DroB60) P' \ 2.85 max 0.847 (99%). 1.811 (29%), 2.110 (15%) Mn^^(n, Y) (AmaE35, SerL47b, OrsA49, HumVSl) itA 57 Mn 1.7 m (CohB54a. Kuml60) 1. 9 m ( VasiSS63) A p" (CohB54a) -57.5 (MTW) B chem, excit (CohB54a) P- V 2. 55 max [Fe x-rays, 0.014], 0.122 (strong), 0.136 (strong), 0.22, 0.353, 0.692 Cr^^(a, p) (VasiSS63) Fe^^(n, p) (CohB54a) XA 57 Mn 7 d (SharmHS 1 ) - P (SharmHSl) G chem, cross bomb (SharmH51) activity not observed (CohB54a, NelM50) alphas on Cr, Mn (SharmH51) 58 Mn 1. 1 m (ChitD6l) A p” (ChitD6l) -56 (MTW) B chem, sep isotopes (ChitD6l) V 0.36, 0.41, 0.52, 0.57, 0.82, 1.0, 1.25, 1.4, 1.6, 2.2, 2.8 Fe^ (n, p) (ChitD61) 26^® 8.2 h (JuliaJ59a) 7.8 h (MillDR48) A P"^ 56%, EC 44% ( JuliaJ59a) others (ArbE56, FrieG51a) -48.33 (MTW) A chem, genet (MillDR48) parent Mn^^“ (MillDR48) not parent Mn^^, lim 5% (FrieG51a) Y 0.80 max Mn X-rays, 0.165 ( 100%), 0.511 (112%, V*) daughter radiations from Mn^^^ 52 Mn Cr®°(a, 2n) (FrieG51a) 8.51 m (EbrT65) 8.9 m (RideL37a, LivJ38b, JuliaJ59a) 8.6 m (SalS65) A p'*’ (Rid^L37a), [EC] -50.70 (MTW) A chem (RideL37a) chem, excit, cross bomb (LivJ38b) P"^ \ 3. 0 max 0.38 (32%). 0.511 (196%, v"^) Cr®°(a, n) (NelM50, RideL37a, LivJ38b) Cr^^(ci, 3n) (JuliaJ59a) F^4 % A 5.84 (ValleG41a) -56.246 (MTW) 2.9 (GoldmDT64) 2.60 y (SchumR56) 2.94 y {BrowGSO) others (SchumRSla) A EC, no (BradH46b, MaeDSla. PortF53) -57.474 (MTW) A chem, excit (LivJ39c) daughter Co^^ (LivJ41) Y Mn X-rays, continuous bremsstrahlung to 0.23 (0.004%) Fe^(n, V) (EmmW54a) % A 0" c 91.68 (ValleG41a) -60.605 (MTW) 2.7 (GoldmDT64) % A 4) neutrons on Ni (PreU60) CO 2.0 m {Preil60) others (ValtA62, ParmT49) V G sep isotopes (PreiI60) activity not observed (StraJ66) others (ParmT49) . .,(64) neutrons on Ni (PreiI60) i.t-56 28^^ 6. 10 d (WelD63) 6.4 d (ShelR52) 6.0 d (WorW52) A EC, no p"^, lim 1% (ShelR52) -53.92 (MTW) A chem (WorW52) chem, sep isotopes, genet (ShelR52) parent Co^^ (ShelR52, WorW52) Y e Co x-rays, 0.163 ( 997»). 0.276 (317.), 0.472 (357.), 0.748 (487.), 0.812 (857.), 1.56 (147.) 0.155 daughter radiations from Co^^ Fe^‘^(a, 2n) (ShelR52, WorW52, OhnH65, JenkR64) 36.0 h (EbrT65) 35.7 h (RudG64) others {MaiF49, LivJ38, FrieG50, ChilG62. RoaJ59, PauA65) V A EC 547.. P'’’ 467. (KoniJ58c, KoniJ58) EC 507., p'^ 507. (FrieG50) EC 637., p'*' 377. (ChilG62) -56.10 (MTW) A chem, excit, cross bomb (LivJ38) 57 parent Co (FrieG52) P"^ Y 0.85 max Co X-rays, 0.127(14%), 0.511 (927., V^^), 1.37 (867.), 1.89 ( 147.) daughter radiations from Co^"^ Co^^(p, 3n) (WagG52) Fe^^(a, n) (LivJ38, DorR41, NelM42, MaiF4 9, FrieG50, CanR51c) t.t-58 Ni % A 8x10 y sp act (BertA53) % A (T C 48.89 (BaiK50) -66.000 (MTW) 0.46 (GoldmDT64) Zn^5 245 d (TobJ53, PerrC38) 244 d (GeiKW57) 246 d (WriH57, EasH60) 250 d (TatV6l, Agarl6 1 ) A EC 98.3%, p4 1.7% (GleG59, RiccR60b) p'*' 1.2% (BereD62b) -65.92 (MTW) A chem (PerrC38) chem, excit, cross bomb (LivJ39a) daughter Ga^^ (LivJ3 9d) P^ e Y 0. 327 max 1.106 Cu x-rays, 0.511 (3.4%, 7^^), 1.115 (49%) Zn®‘^(n, 7) (SagR39, SerL47b) Zni' % A 27.81 (BaiK50) -68.88 (MTW) Zr^ % A 4. 1 1 (BaiK50) -67.86 (MTW) 253 Malf-lifc Tyf>e of decay ( ); % abundance; Mass excess (A=M-A), MeV (C’^=0); Thermal neutron cross section ((7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 69 69m 57 m ( LivJ39a) 51 m (HopH48) 52 m (HansA49) 13.8 h (LivJ39a) others (HopHSO, HopH48) ia!? (pp) >io'S sp act (FremJ52) 2.4 m {ThwT6l) 2.2 m (LBlaJ55, HugD46) ! 3.92 h (LevkVSS) 63 64 Ga 65 65 66 4. 1 h (SonT64) I 4.0 h (ThwT6l) 46.5 h (ThwT63) 49 h (SiegJ51) i 37 h (IshM63) 33 s (NurM65) 2.6 m (CrasB53) 2.5 m (CohB53) 15.2 m (DaniH57a) 15 m (AlvL38, LivJ39d. CrasB54, KoesL54, PoolM52) 8.0 m (CrasB54) 9.45 h (BangeL50d) 9.3 h (RudG64) 9.5 h (CarvJ59) 9.4 h (RideL3 7a, BucJ38) 9.2 h (MulcA50, MarmW37) others (FrauH5Tb) 18.56 (BaiK50) -69.99 (MTW) 1.0 (to Zn^^) 0.1 (to Zn^^) (GoldmDT64) p (HeyF37b) -68.43 (MTW) IT (KenJ39) -67.99 (LHP, MTW) 0.62 (BaiK50) -69.55 (MTW) 0.10 (to Zn^S 0.01 (to Zn^^"^) (GoldmDT64) p (HugD46) -67.5, (MTW) p (LBlaJ55) -67.2 (LHP, MTW) p (SiegJ51) -68.14 (MTW) [p'*', EC] (NurM65) -57 (MTW) P'*', (CrasB53), [EC] -58.93 (MTW) EC (AlvL38) p'*' >50% (AteA52) -62.66 (MTW) p 57%, EC 43% ( CajnD63) -63.71 (MTW) chem, n-capt (HeyF37b) chem, excit, cross bomb (LivJ3 9a. KenJ3 9) daughter (KenJ3 9) chem, excit (ThorRL38) chem, excit, cross bomb {LivJ3 9a, KenJ3 9) parent (KenJ39) n-capt, cross bomb (HugD46) n-capt, sep isotopes (LBlaJ55) sep isotopes, n-capt (LBlaJ55) chem {SonX64) chem, genet (SiegJ46, SiegJBl) 72 parent Ga (SiegJSl) chem, excit, cross bomb, genet (NurM65) parent Zn^^ (NurMfiS) chem, cross bomb (CrasB53) chem, excit, sep isotopes (CohB53) chem, genet (LivJ3 9d) parent Zn^^ (LivJ39d) daughter Ge^^ (PoriN58) chem, excit, cross bomb (CrasB54) activity not observed (MorrD59) chem, excit (MannW37, RideL37) daughter Ge^^ (HopH49) 0. 90 max no Y Zn X-rays, 0.43 9 (95%) 0.429 daughter radiations from Zn 69 6.05 max (33%), 2.8 max 0.511 (196%, Y^^), 0.80 (15%), 0.992 (43%), 1.25 (7%), 1.38 (14%), 1.56 (7%), 1.78 (5%), 2.18 (11%), 2.34 (9%), 3.32 ( 18%) 2. 24 max ( 12%), 2. 1 1 max 0.044, 0.053, 0.105 Zn X-rays, 0.054 (8%), 0.061 (12%), 0.115 (55%), 0.152 (10%), 0.206 (4%), 0.511 (180%, Y*), 0.75 (10%), 0.93 (3%) 4. i 53 max Zn x-rays, 0.511 (114%, Y*), 0.828 (5%), 1.039 (37%), 1.91 (3%), 2.183 (5%). 2.748 (25%). 4.30 (5%) j A Ur"--. ; daughter Zn (KenJ39) |Zn^®(n, Y) (HeyF37b, j HeyF36, SerL47b, HumV51, SagR39) Ga^^(d, a) (LivJ39a) I Z Q Zn (n, Y) (ThorRL38, LivJ39a, SerL47b) Ga^^(d, a) (LivJ39a) 2.61 max 0.120 (0.9%), 0.39 (1.3%), 0.510 (13%), 0.92 (3%). 1.12 (1.3%) 1.46 max 0.13 (9%>), 0.38 5 (94%), 0.4 95 (75%), 0.609 (65%), 0.76 (5%). 0.99 (8%), 1.11 (4%) 0.30 max 0.005, 0.014 Ga X-rays, 0.015 (8%), 0.046 (weak), 0.145 ( 90%), 0.192 ( 10 %) 72 daughter radiations from Ga Zn (n, Y) (HugD46, LBlaJ55, ThwT61) Zn^°(n, Y) (LBlaJ55, ThwT61, TanP64, SonT64) fission .(SiegJSl, SteinESic, GoeR49, FolRSl, TurASla. ThwT63, KjeA63) icu^^(a, 4n) (NurM65) '. 60 / ,. 6 -. Ni (Li, 3n) + Ni^®(Li^, n) (NurM65) Cu^^(a, 3n) (CrasB53) Zn^(p, n) (CohB53, JacoT60) 64 Zn (d, Zn) (CratB53) Cu*^(a, 2n). Zn*’'*(d.n). Zn (p, Y) (MorrOt'^) alphjt • on Cu, p'- Zn (CritsBM) - 65. I 1. Rid- I. 7a. I A.. : 254 Isotope Z A Half-life Type of decay (^ ); % abundance; Mass excess (A=M-A),MeV (C"=0): Thermal neutron cross section ( J’), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion 3.C." 77.9 h (TobJ55. TobJSl) 79.2 h (RudG64) 78.2 h (MCOWD48) others (HopHSO, HopH48, MannW38) A EC (AlvL38) no lim 0.01% (MeyW53) -66.87 (MTW) A chem, excit (MannW38, MannW38a) chem, excit, cross bomb (AlvL38) daughter Ge^*^ (HopH49) ■y e Zn x-rays, 0.093 (40%), 0.184 (24%), 0.296 (22%), 0.388 (7%) 0.084, 0.092 Zn^^(d, n) (AlvL38, ValleG3 9) Cu^^(a, 2n) (HubbJ57) Ga'« 68.3 m (EbrT65) 68.2 m (BormM65) 68 m (RideL37a, PerlmM48, KoesL54) A 88%, EC 12% (RamasM5 9a, TayH63a) -67.07 (MTW) A chem, excit (BotW37a, Ride L3 7a) daughter Ge^® (HopH48, HopHBO) V 1. 90 max Zn x-rays, 0.511 (176%, V*), 0.80 (0.4%), 1.078 (3.5%), 1.24 (0.14%), 1.87 (0.15%) daughter Ge^® (HopH48) Cu^^(a, n) (RideL37a, MannW37) 6ft Zn (p, n) (DubL38, BucJ38, MukASO) Zn^^(d, n) (ValleG39) % A cr c 60.2 (IngM48b) 60.5 (AntkS53) -69.326 (MTW) 1.9 (GoldmDT64) Ga'° 21. 1 m (BunkM57) 20 m (AjnaE35, MannW38) A p” (DubL38) -68.90 (MTW) A chem, n-capt (AmaE35) chem, excit (DubL38) P" V 1.65 max 0.173 (0.16%), 1.040 (0.5%) Ga^^(n, Y) (AmaE35, SerL47b) 0 ^ % A (T C 3 9.8 (IngM48b) 39.5 (AntkS53) -70.135 (MTW) 5.0 (GoldmDT64) Ga^2 14.12 h (WyaE6l) 14.08 h (BisGSO) 14.3 h (SiegJSl, MandeC43a) 14.1 h (SagR39) others (LangeL60) A p" (SagR3 9) -68.58 (MTW) A chem, n-capt, excit (LivJ38b, SagR3 9) daughter Zn^^ (SiegJSl) p“ V 3.15 max 0.601 (8%), 0.630 (27%), 0.835 (96%), 0.894 (10%), 1.050 (7%), 1.465 (3.5%), 1.60 (5%, complex), 1.860 (5%), 2.201 (26%), 2.50 (20%, doublet) Ga^^(n, Y) (SagR39, Ser£47b, SiegJSl) Ga^^ 4.9 h (YthC58) 5.1 h (MarqL59) 5.0 h (SiegJ51) V A P (SiegJ51) -69.74 (MTW) A chem, excit (SiegJ46, SiegJSl) chem, sep isotopes, cross bomb (YthCSS) p" e ■y 1.19 max 0.012, 0.043, 0.053 Ge X-rays, 0.054 ( 9%), 0.295 (94%), 0.74 (6%) daughter radiations from Ge^^*^ included in above listing Ge^^(n, p) (SiegJ51, YthC58) Ge^^(d, on) (YthC58) Ga^" 8.0 m (YthC59b) 7.8 m (EicE58) others (MarinJ60, MoriH56) A p' (EicE58) -67.8 (MTW) A decay charac, excit (MoriH56) chem, sep isotopes, excit, genet energy levels (£ic£S8, £ic£62) P" Y 2. 5 max 0.50 (11%, complex?), 0.60 (100%, doublet), 0.87 (9%, doublet), 1.11 (5%), 1.20 (8%, doublet), 1.33 (5%), 1.46 (8%, doublet), 1.76 (7%, doublet), 2.35 (45%) Ge^^(d, a) (YthC59b) Ge^^(n, p) (MarinJ60, £ic£62, Eic£58, YthC59b) Ga^5 2.0 m (MoriH60) 1.5 m (YthCbOa) A p" (MoriHbO, YthC60a) -68.5 (MoriH60, MTW) D chem (YthC60a) P" Y 3.3 max 0.36 ? (1%), 0.58 (3%) [daughter radiations from Ge^^] Ge^^(n, pn) (YthC60a) Ge^^(Y, p) (MoriH60) Ga^^ 32 s (TakaK6l) V p" (TakaK61) C genet energy levels (TakaK6l) P' Y 6 max 0.563, 0.96, 1.12 Ge^^(n, p) (TakaK61) 1.5 TTJ (PoriN58) V A p"^ (PoriN58), [EC] -56 (MTW) A chem, excit, sep isotopes, genet (PoriN58) parent Ga^^ (PoriNSS) P" Y 3. 7 max 0.511 (197%, Y^^), 0.67 (3%), 1.72 (2%) daughter radiations from Ga^^ Zn^^(a, 3n) (PoriN58) Ge^^ 2.4 h (RiccRbOa) 2.5 h (HopH50) others (RiccR56, ZinH65) A p”^ =62%, EC =38% (RiccR60a) EC(K) =48% (ZinH65) -60.7 (MTW) A chem, genet (HopH49) parent Ga^^ (HopH49) P^ Y 2.0 max (<10%), 1.3 max Ga X-rays, 0.046 (37%), 0.068 (11%), 0.114 (22%), 0.185 (23%), 0.245 (7%), 0.27 (19%), 0.30 (6%), 0.34 (19%), 0.38 (48%, doublet?), 0.40 (6%), 0.47 (19%), 0.511 (124%, Y*) daughter radiations from Ga^^ Zn^(u, 2n) (RiccR60a) 255 iMXopC L A Hair-lifc Type of decay ( ); % abundance; Mass excess (A5M-A),MeV (C'"=0); Thermal neutron cross section ((7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 18.7 m (RiccR59) 18.6 nr» (CogM6S) n m (HopHSO. VasiSSM) 19 m ( AtcA53) others (RiccRS6) — ' ¥ A EC (HopH50, RiccR59) -62.5 (MTW) A chem, genet (HopH49) parent (HopH49) 1 V ^ 3. 1 max 0.170 ( 105%, doublet), 0.511 (170%, V*). 0.84 (4%). 0.92 (7%). 1.48 (5%) daughter radiations from Ga^^ Zn^(a, n) (RiccR59) c.^« ns d (CrasBSb) ZSO d (HopHSO) A EC (HopH48) no lim 0.4% (RamasM59a) -67 (MTW) A chem (MannW38) chem, genet (HopH48) 68 parent Ga (HopH48, HopHSO) V Ga X-rays daughter radiations from Ga^® Zn^^(a, 2n) (MannW38, Rama sM 59a, HoreD59) 36 h (TeinJ65) 40.4 h (NusR57) 38.5 h (SchweC63) 40 h (MCOWD48, HopHSO) others (MarmW38, Hube044a) A EC =67%. p'*' =33% (MCowD48) EC(K) =55% (ZinH65) -67.101 (MTW) A chem (MannW38) chem, excit, cross bomb (MCowD48) 6 9 daughter As (ButeF55) p" V 1.22 max Ga X-rays, 0.511 (68%, V*), 0.573 (13%), 0.872 ( 10%), 1.107 (28%), 1.335 (3%) Ga^’(d, 2n) (SeaG41, MCowD48. HudC51, TemJ65) % A (t»pC / A luiriifc Type of decay (^* ); % abundance; Mass e.\cess (A=M-A), MeV (C' =0); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production cross section ((7), barns ib.4 h {HubeP53, HubeP53) 36.5 h (DihB55) 36.3 h (MUA40) 36.8 h (WriH57. WeilG43) 36. 1 h (PhiK48) A p, no lim 0.03% (BarbW47) no EC(K), lim 0.02% (ScoJ57) -72.29 (MTW) A chem, n-capt (AmaE35) P y 2. 97 max 0.559 (43%), 0.657 (6%), 1.22 (5%, doublet), 1.44 (0.7%, doublet), 1.789 (0.3%), 2.10 (0.9%, doublet) As^®(n, Y) (AmaE35, CurtB38, OrsA49, HumVSl) . 77 A> 38.7 h (BunkM53, SchmJ55) 38 h (SugaN53. TurASla) 39 h (EndP54, ReynS53) others (SteinESl) A p (SteinESl) -73.92 (MTW) A chem, genet (SteinE46, SteinESl) daughter (SteinESl, SteinE46) daughter Ge^^^ (ArnJ47, ReynSSO) P' y 0. 68 max 0.086 (0.1%), 0.239 (2.5%), 0.522 (0.8%) daughter radiations from Se 76/ N.t /- 77 _ 77m Ge (n, Y) Ge + Ge (p”) (LyoW57, ArnJ47, ReynS57) A 78 A« 91 m {SugaN53, KjcA59) 90 m (SteinES 1, BrigRSl) 88 m (CunJ53) others (SneA37, SagR39a, CurtB38) A p" (SneA37) -72.8 (MTW) B chem (SneA37) excit (CurtB38) daughter Ge^® (SteinE46, SteinESl, SugaNS3, YthCS9a) P" y 4. 1 max 0.614 (T 42), 0.70 (( 15), 0.83 ((8). 1.31 (1 11) Br®'(n, a) (SneA37, SagR39a, BrigRSl) fission (SteinE46, SteinESl) Se^®(n, p) (NemY58a) 78m As 6 m (NemY58a) V IT (? ) (NemY58a) G excit (NemYSSa) activity not observed (FritKfiSa) neutrons on (NemYSSa) A 79 As 9.0 m { CunJ53) 9. 1 m (YthC54) A p" (VHaaP52) -73.7 (MTW) A chem (ButeFSO) chem, genet (YthCS4, CunJS3) parent Se^^^ (YthC54, CunJ53) y 2. 1 5 max 0.36 (2%), 0.43 (2%), 0.54 (0.5%), 0.73 (0.5%), 0.89 (1%) daughter radiations from Se^^^ Se®^(n,a)[Ge'^®](p') (YthC61, YthC54) Of) Se°“(n, pn) (VHaaP52, YthC61) Se®°(Y, p) (KuroT61a) > 00 o 15.3 s (MeaRE59) others (YthC54) A p" (MeaRE59) -71.8 (MTW) C chem, excit (YthC54) excit, sep isotopes (MeaRE59) p" y 6. 0 max 0.666 (42%), 0.8 (1.4%, complex), 1.22 (4%), 1.64 (4%). 1.77 (1.7%) Se®°(n, p) (MeaRE59. YthC54) A 81 As 33 s (YthC60) 31 s (MoriHbO) A p” (YthC60, MoriHbO) -72.6 (MoriHbO. MTW) B chem, excit (MoriH60, YthC60) y 3.8 max no Y ft? Se°‘(n,pn) (YthC60) ft? Se°‘(Y,p) (MoriH60) A 85 As 0.43 s (WanR55) V [p“], n (WanR55) F excit (WanRSS) fission (WanRSS) =44 m (HopH50) V p'^ (HopHSO), [EC] D chem (HopH49, HopHSO) y [As X-rays, 0.511 (Y*)] As^®(d. 7n) (HopHSO) parent As^^ (HopHSO) [daughter radiations from As^^] 4.5 m (AteA57) 5 m (BeydJ57) A p'*' (BeydJ57), [EC] -63.5 (MTW) B chem, excit (BeydJS7, AteA57) V 3.4 max 0.16, 0.511 (Y^^, [195%]) Ge^°(a. 3n) (AteA57) N*"* on Cu (BeydJ57) 8.4 d (CumJ58) 9.7 d (HopH50) A EC (HopHSO) no p"*^, lim 0. 1% (CumJ58) -68 (MTW) A chem, genet (HopH48) parent As^^ (HopH48, HopHSO) Y e As X-rays, 0.046 (59%) 0.034. 0.044 daughter radiations from As^^ As’®(d. 5n) (HopH48. HopHSO) Ge’°(a. 2n) (CumJ58) 7. 1 h (CowW48, ScoFSl. HaywR56, RiccR60c others (HopHSO) A p"^ 65%. EC 35% (HaywR56, LHP) others (KuzM57, RiccR60c) no IT (RiccR60c) * -68.17 (MTW) A chem (HopH48) chem, excit, sep isotopes (CowW48) e y 1.66 max? (^0.7%), 1.30 max 0.054, 0.064, 0.347 As X-rays, 0.066 (65%), 0.359 (99%), 0.511 { 130%., Y*) daughter radiations from As^^ Ge^°(o. n) (Cou'.MB. ScoFSl. RiccR60c: As^®(d. 4n) (HopHSU) 4Z m (RiccR60c) 44 m (HooF53) A p"^. EC (HooF53, RiccR60c) -68.2 (RiccR60c, MTW) B chem, excit (ScoF53) Y 1, 7 max As X-rays, 0.088 ? (6%), 0.251 ? (14%), 0.58 ? (6%) Cc^*^(a, n) r R - : ■ .r,; ( ’ ^ % 0.87 (WhiJ48) A -72.212 (MTW) (T C 30 (GoldmDT64) 1 I 258 Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A),MeV 10^^ y genet (SharmH53) % A 9.19 (WhiJ48) -77,59 (MTW) O’ c 0.004 (to Se®®) 0.05 (to Se®®"^) {GoldmDT64) Se®® 25 m (GleLSla) 26 m (RutW52) others ( Langs A40, YthC54) A p" (SneA37) -75.4 (CocR59. MTW) A chem, excit, cross bomb (SneA37) chem, genet (LangsA40) parent Br^^ (LangsA40, GleLSla) P" Y 1.8 max 0.22 (44%), 0.36 (69%), 0.52 ? (59%), 0.71 ? (25%), 0.83 ? (41%, complex), 1.06? (16%), 1.31 ? (25%), 1.88 (16%), 2.29 ( 9%) Se®®(n, Y) (SneA37, LangsA40, SerL47b, CocR59) daughter radiations from Br®^, Kr®®"’ 259 Itofopr / A Half-life Type of decay ); % abundance; Mass excess (A^M-A), MeV (C'==0); Thermal neutron cross section (^7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion 8 im 84 70 ■ (CocRBS) 69 ■ (RutWS2) 67 • (ArnJ47) 3.3 m (Sat J60) Se®^ I 39 8 genet (SatJfiO) Se®^ I 16 8 (SatJ60) I 36 m (HollaJ53, j GrayJH60) 26 m (ButeF60a) 42 m (BeydJ57a) 75 76 1.7 h (BaskKfil. WoodwL48a) 1.6 h (HollaJ53, BeydJ57a) 16.1 h (GirR59c) 16.2 h (Dosl63) 16.3 h (ButeF60a) 17.2 h (FulS52) 17.5 h (ThuS55) 57 h (HollaJSl) 58 h (WoodwL48a) 4.2 m (GooA59) 6.5 m (SchaA6la, RikR6l) 6.4 m (SneA37) 6.2 m (PierW60) <6 m (SneA37) p (ArnJ47) -75.2 (CocR59, MTW) [(3 ] (SatJ60) [p ] (Satj60) [p ] (Satj60) (HollaJ53) r, [EC] (HollaJ53) -65 (MTW) p"^ =90%. EC =10% (BaskK61) -69.44 (MTW) p'*’ =62%. EC =38% (DosI63) [p"^ 67%. EC 33%] (GirR59c) EC(K) 20% (KuzM57) -70.6 (MTW) EC 99%. p 1% (SehR54) others (WoodwL48a) -73.24 (MTW) IT (GooA59) -73.13 (LHP. MTW) p [92%]. EC [8%] (RikR6l. PierW60) -73.45 (MTW) P (SneA37) 50.52 (WilliD46) 50.56 (CamAE55a) -76.075 (MTW) 8.5 (to Br®°) 2.9 (to Br®°™) (GoIdmDT64) chem, genet (ArnJ47) parent (ArnJ47) chem, genet (GleL46) 84 parent 31.8 m Br (GleLSi, EdwRSl, SatJ60) not parent 6.0 m Br®^ (SatJ60) chem, genet (SatJ60) parent Br®^ (SatJ60) chem, genet (SatJ60) parent Br®^ (or Br®®) (Satj60) chem, excit (HollaJ53) chem, excit (HollaJ53) chem, genet energy levels (BeydJ57a) daughter Kr^"^ (20 m) (GrayJH60) daughter Kr*^"^ ( 12 m) (ButeF60a) chem, cross bomb, sep isotopes ( WoodwL48a) daughter Kr^® (ButeF60a) chem (HopH48a) chem, sep isotopes (FulS52) chem, mass spect (ThuS55) daughter Kr*^® (CareA54, ThuS55, Dosl63) chem, sep isotopes ( WoodwL48a) parent Se*^^^ (CanRSlc, CanR51a) excit, sep isotopes (GooA59) chem, excit (SneA37) cross bomb (PierW60) [genet] (StahP53a) activity not observed (SchaA6la, Pier W 60) 3.8 max 0.35 (T 16), 0.65 (T 20), 1.01 (t 100, complex), 2.02 (T 40) 8 3 daughter radiations from Br, 83m Kr Se®^(n. Y) (AmJ47. CocR58) fission (SatJ60) I fission (SatJ60) daughter radiations from Br®^ fission (Satj60) on Cu (HollaJ53) 4. 7 max 0.511 (y"^). 0.64 Cu®®(C^^3n) (HollaJ53) 1. 70 max [Se X-rays) Y*). 0.62 3. 6 max 0,285, 0.511 (180%, Se*^^(d, n) (WoodwL48a, FulS52, BaskK6l) Se'^'^(p, V) (WoodwL48a) Cu®®(C^^2n) (HollaJSl) As^®(a. 3n) (GirR59cl Se X-rays. 0.511 (133%. Y ). 0.559 (63%). 0.65 (19%). 0.75 (6%). 0.85 (7%). 1.21 (13%). 1.37 (5%). 1.47 (7%). 1.86 (11%). 2.10 (7%). 2.39 (4%). 2.78 (5%). 2.97 (8%). 3.57 (2%) 0. 34 max 0.229, 0.287, 0.508 Se X-rays, 0.24 (30%, complex), 0.300 (6%), 0.52 (24%), 0.58 (7%), 0.75 (2%), 0.82 (3%). 1.00 (1.3%) daughter radiations from Se^^^ [Br x-rays]. 0.108 0.094. 0.106 (these radiations were formerly 78, I As ^(a, 2n) (HollaJSl, I CanRSla, MonaS63) Se^®(p. Y) (CooA59) assigned to Br ) 2. 55 max Se x-rays. 0.511 (184%. Y*), 0.614 (14%) A«'^®(Q.n) (SncAl7) Sc*^®(p.n) (SchaA61a. RikR61. Pi. rW60, BucJ38. VallrCl'- Se^^(p. Y) (SchoAbl. : Se^^(d. n| (Snr A 7. Va»iSS62c: [daught< r Br ] (St4hP6vO 373-062 0 - 70 - 18 260 Isotope Z A Half-life Type of decay ( ); % abundance; Mass excess (A=M-A),MeV (C'-’=0); Thermal neutron cross section ((7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 3sBr 4.8 3 (GooA59) 5.0 s (SchaG54) A IT (SchaG54) -75.87 {LHP, MTW) B excit (SchaG54) excit, sep isotopes (GooA59) Y [Br X-rays], 0.21 Se^®(p, y) (GooA59) Br^^(n, n') (SchaG54) 17.6 m (KinA57) 18 m (SneA37, SegE39, AmaE35) A p" 92%, p'*^ 2.6%, EC 5.7% (TrehP62) Others (MimWSl, ReynJHSO, LabJ51, BarbW47) -75.882 (MTW) A chem, n-capt (AmaE35) chem, excit, cross bomb (SneA37) chem, genet (SegE39) daughter Br^^^ (SegE39, DVauD40, SidR41) ?■" P" V 2. 00 max 0.87 max Se x-rays, 0.511 (5%,, 0.618 (7%), 0.666 (1.0%) Br^^(n, Y), daughter Br^Om (SneA37. SerL47b, OrsA49, AliA36, SegE39) B^SOm 4.38 h (KinA57) 4.40 h (SchmW60) 4.6 h (MimWSl) others (SneA37, BucJ38, BotW3 9) A IT (SegE39) -75.796 (LHP, MTW) A chem, n-capt (AmaE35) chem, excit, cross bomb (SneA37) parent Br^^ (SegE39, DVauD40, SidR41) Y e Br X-rays, 0.03 7 (36%) 0.024, 0.036, 0.047 daughter radiations from Br®® Br^’(n, y) (AUA36, SneA37, SegE39, SerL47b) Br!.! % A cr c 49.48 (WmiD46) 49.44 (CamAE55a) -77.97 (MTW) 3 (GoldmDT64) Br82 35.34 h (Merj62) 35.9 h ( CobJSO) 35.1 h (WintF51) 36.0 h (BerneE50) 35.5 h (WyaE6l) 35.7 h (SinWSl) A p" (KurtB35) no EC or p^, lim 0.03% (ReynJH50) no p^, lim 0.02% (MimWSl) -77.50 (MTW) A chem, n-capt (KurtB35) chem, excit, cross bomb (SneA37) daughter Br^^*^ (Emej65, Ande065) P" Y 0.444 max 0.554 (66%), 0.619 (41%), 0.698 (27%i). 0.777 (83%), 0.828 (25%), 1.044 (29%), 1.317 (26%), 1.475 ( 17%) Br®^(n, Y) (SneA37, KurtB35, SerL47b, Erne J65) Br®^ 6.05 m {Ande065) 6.20 m (Emej65) 6. 2 m (IyeR65) A IT 97.6%, p' 2.4% (Emej65} IT, p" 50.18% (Ande065) -77.45 (LHP, MTW) A chem, genet, sep isotopes (Ande065) genet (Emej65) parent Br^^ (Emej65, Ande065) Y P" e Br X-rays, 0.046 (0.3%), 0.777 (0.15%), 1.475 (0.009%) [3. 138 max] [0.033, 0.044] daughter radiations from Br®® Br®^(n, y) (EmeJ65. Ande065) Br®® 2.41 h (BowleB6l) 2.39 h (PastM63) 2.30 h (SwiP53) 2.4 h (GleLSla, SneA37, VasiI58) 2.3 h (LangsA40, HasR51) A p~ (SneA37) -79.02 (MTW) A chem, excit (SneA37) j V4. c ... 83m daughter Se, parent Kr (LangsA40, StraF40, MoussA41, GleLSla) daughter (ArnJ47) P" Y 0. 93 max 0.530 ( 1.4%) daughter radiations from Kr^^^ Se®®(n, y)Se®®(p") (SneA37, LangsA40, GleLSla, BowleB6l) tri 00 31.8 m (JohnN57) 31.7 m (SatJ60) others (StraF40, DufRSl, KatcSSl) A p“ (DodR3 9) -77.7 (MTW) A chem (DodR39) chem, excit (BornH43) daughter Se^^ (GleLSl, EdwRSl, SatJ60) 84 not parent 6.0 m Br (SatJ60) P" Y 4. 68 max 0.81 (9%), 0.88 (51%), 1.01 (10%), 1.21 (4%), 1.90 (18%), 2.47 (8%), 3.93 (13%) Rb®^(n, a) (BornH43, SatJ60) fission (DodR39, Hah039c, Hah039e, StraF40, Mous sA4 1, BornH43, KatcSSl) Br«4 6. 0 m (Sat J60) • p“ (SatJ60) A chem, excit, sep isotopes (SatJ60) not daughter Se^^ (SatJ60) not daughter 31.8 m Br^*^ (SatJ60) P" Y 1. 9 max 0.44 (68%), 0.88 (75%), 1.46 (75%), 1.89 (16%) Rb®^(n, a) (SatJ60) fission (SatJ60) Br®® 3.00 m (SugaN49) 3.0 m (StraF40, BomH43) A p” (StraF40) -78.7 (MTW) A chem (StraF40) chem, genet (SeeW43) parent (SeeW43, SugaN4 9) daughter Se®^ (SatJ60) P" Y 2. 5 max no Y daughter radiations from Kr®^^ fission (StraF40, BornH43, SeeW43, SugaN49) Br®® 54 s (StehA62, WilliE63) A p~ (StehA62) no n, lim 0. 25% (SteinE63) -76 (MTW) B chem, excit, sep isotopes (StehA62) P' Y 7. 1 max 1.29 (f 12), 1.36 (( 39), 1.56 (t 100), 1.97 (( 20), 2.34 (f 20), 2.75 U 36) Kr®®(n, p) (StehA62) Br®^ 55.6 s (n) (HugD48) 54.5 s (n) (KeeG57, PerloG59) 55.0 s (n) (RedW47) 56.1 s (p-) (SugaN4 9) 55.4 s (n) (WilliE63) A p“, p"n (=2%) (LeviJ51, StehA53) -74.6 (WUliE63, MTW) A chem (StraF40) chem, genet (BornH43, SugaN49) parent Kr®^ (BornH43, SeeW43, SugaN49) ft6 parent Kr (2%) (SneA47a, SugaN4 9) R7 daughter Se (?) (SatJ60) p' n Y 8.0max(?), 2.6 max 0.3 (mean energy) 1.44 (t 100), 1.85 (r 18), 2.48 (f 18), 2.64 (r 16), 2.98 (( 25),. 3.18 (f 16). 3.80 (1 11), 4.19 (f 21), 4.8 (r 17), 5.0 (T 17). 5.2 (T 12) daughter radiations from Kr fission (StraF40, SneA47a, SugaN47, SugaN49, RedW47, HugD48) 261 lt«>citpc / A Malflifc Type of decay ( ^ ); % abundance; Mass excess (A=M-A),MeV (C’=0); Thermal neutron cross section ((7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production Br®* IS®' IS S • (SugaN49) 16. } • (PerloG59) others (PerloGST, KeeGST) «•* p" (SugaN49) n (weak) (PerloG59, PerloG57) A chem, genet (SugaN49) parent Kr®^ (SugaN49) 7 0.76 fission (SugaN49, KeeG57, PerloC59, PerloG57) Br®’ ■IS* (n) (HugD48, RedW47) 4 4* (n) (PerloG59) y P, P n (SneA47, HugD48) D chem (SneA47) parent Kr^^ (?), parent (?) (CoryC51) n 0.5 (mean energy) fission (SugaN47, SneA47, SugaN49, RedW47, HugD48) Br’° 1.6 * (PerloG59) [p“], n (PerloG59) D chem, decay charac (PerloG59) fi s s ion ( Pe rlo G 5 9) 20 m (GrayJH60) 12 m (ButeF60a) y A p"*", [EC] (GrayJH60) -62 (MTW) B chem, genet (GrayJHfiO, ButeFfiOa) 74 parent Br (36 m) (GrayJH60) 74 parent Br (26m) (ButeFfiOa) Y 3. 1 max 0.511 (Y*) 74 daughter radiations from Br protons on Br (GrayJH60) protons on Sr (ButeFfiOa) Kr” 5- 5 m (ButeFSOa) <1 m (GrayJH60) y A [B'*^,EC] (ButeFbOa) -64 (MTW) E chem, genet (ButeFfiOa) activity not observed (GrayJHfiO) parent Br^^ (ButeFfiOa) protons on Br (ButeFfiOa) Kr^® 14.8 h genet (Dosl63) 9. 7 s (CareA54) 11 h (ThuS55) «•» A EC, no p"', lim 1% (DosI63) no EC(K) (CareA54) -69 (MTW) A chem, genet (CareA54) chem, mass spect (ThuS55) parent Br^^ (CareA54, ThuS55, Dosl63) Y [Kr x-rays], 0.039, 0.104, 0.135, 0.267, 0.316, 0.407, 0.452 daughter radiations from Br^® Br^®(p, 4n) (ThuS55) Se^'^(a, 2n) (DosI63) 1. 19h (ButeF60a) others (ThuS55, WoodwL48a, BeydJ57a) A EC =20%, p'*’ =80% (ThuS55) Others (WoodwL48a) -70.4 (MTW) A chem, sep isotopes (WoodwL48a) chem, mass spect (ThuS55) p" e Y 1. 86 max 0.011, 0.023, 0.094 (with Br^^”’), 0.106 (with Br^^”*), 0.118, 0.136 Br X-rays, 0.024, 0.108 (with Br^^”'), 0.131, 0.149, 0.665 77 daughter radiations from Br Br’%, 3n) (ThuS55) Krl® % A “■c 0.3 54 (NierA50a) -74.14 (MTW) 2 (to Kr^®) (GoldmDT64) Kr"’ 34.92 h (BonaE64) 34. 5 h (RadP52) others (WoodwL48, CreEC40a, ChacK61) *A A EC 92%, p'*’ 8% (NDS, BonaE64) others (RadP52a, RadP52b, RadP55, LangeM54, BerglSld, Thus 54c) -74.46 (MTW) A chem (CreEC40a) chem, sep isotopes (WoodwL48) mass spect (BracD52) daughter Rb^^ (ChacK61) e Y 0. 60 max 0.031, 0.043, 0.123, 0.204, 0.248, 0.384 Br X-rays, 0.136(0.7%), 0.261 (97o). 0.398 (10%), 0.511(15%, Y®"), 0.606 (10%), 0.836 (2.0%), 1.119(0.5%), 1.336 (0.5%) Br^’(p.n) (CreEC40a) Br^®(d, 2n) (ClarE44, Bona£64) Kr^®(n, Y) (HoaESU, BergI51d) Kr79m 55 s (CreEC40a) A IT (?), no p'*' (CreEC40a) -74.33 (LHP, MTW) D chem (CreEC40a) Y e Kr X-rays, 0.127 0.113, 0.125 Br^^(p, n) (CrcEC'tOal Kxi“ % A (T C 2.27 (NierA50a) -77.89 (MTW) 15 (GoldmDT64) Kr®* 2. 1 X 10^ y sp act, mass spect (EasT64a, ReynJHSOa) y A EC (ReynJH50a) -77.7 (MTW) A chem, mass spect (ReynJH50a) Y Br X-rays SO Kr (n. Y) (RcynJH'G*. Ea«T64*) KrSlin 13 s (ChacK6l, CreEC40a) others (KarrDSO) y A IT, no p'*’ (CreEC40a) -77.5 (LHP, MTW) A chem (CreEC40a) genet (KarrD50) daughter Rb^^ (KarrDSO) Y e Kr X-rays. 0. 190 (65%) 0.176, 0.188 daughtc r Rb^ * (KarrDSO) % A (DilCSla) V p' (Hah042) B chem, genet (Hah042, SelBSl) parent Rb^^ (BradESl, DilCSla, DUC51) ancestor (SelBSl) fission (Hah042, DUCSla, SelBSl, BradESl) Kr^ 1.4 5 (DUCSla) p" (Hah043b) B chem, genet (Hah043b, DUCSla) 94 parent Rb^ (Hah043, Hah043b, DilCSl) 94 ancestor Y (Hah043b, DilCSla) fission (Hah043b, DUCSla, Hah043) Kr’5 short (DilCSl) V [pi (DilCSl) F chem, genet (DilCSl) parent Rb^^, ancestor Zr^^ (DilCSl) fission (DilCSl) Kr’^ »i s (DilCSl) V p“ (AdaRMSi) G chem, genet (AdaRMSi, DilCSl) activity not observed (WahA62) fission (DilCSl, AdaRM 51) 37-^’ 24 m (BeydJ57a, ChamiRS?) 21 m genet (ChacK6l) V p'^ (BeydJ57), [EC] A chem (BeydJS7, ChamiRS7) chem, genet (ChacKbl) parent Kr^*^ (ChacKOl) 7 1 [Kr x-rays]. 0.15(73%). 0.19 1 (29%). 0.511 (7^^. [180%]). 1 79 ! daughter radiations from Kr Cu®®(0^®. 2n) (BeydJ57, ChamiR57) Br^®(He®. 3n) (ChacK61) Rb«“ 34 s (Hof£R61) A p'^, [EC] (HoffR61) -73 (MTW) A chem, mass spect (HoffR6l) 80 daughter Sr (HoffR6l) (3^: 4. 1 max 7 I 0.511 (7*. [195%]). 0.618 (39%) daughter Sr®^ (HoffR61) Rb«* 4.7 h (KarrDSO, DogW56, CastS52) V A EC 87%. p"^ 13% (KarrDSO) -75.4 (MTW) A chem, mass spect (ReynF49) parent Kr®^^ (KarrDSO) daughter Sr®^ (CastSSO, Casts S2) daughter Rb ^ (DogWSO) descendant Zr^^ (ZaitN65) 1.03 max \jKr X-rays, 0.253, 0.450, 0.511 1 (26%, y"^), 1.10 ■daughter radiations from Kr^^^ Br^^(Q, 2n) (ReynF49, KarrDSO) Rb®*"’ 31 m (DogW56) *m A p'*’. [EC], IT (DogWS6) -75.3 (LHP, MTW) B chem, genet (DogWSO) parent Rb^^ (DogWSb) 1 |3 : 1.4 mag spect e"j 0.071, 0.083 y \ [Rb x-rays, Kr X-rays, 0.085, i 0.511 (7^^)] i daughter radiations from Rb^^ i Kr®!-" Br^®(Q. 2n) (DogW56) Rb»® 1.25 m (LitL53) 1.3 m (KruP53) 1. 1 m (KurcB55) A p"^ 96%. EC 4% (SakM62) -76.42 (MTW) A chem, genet (LitLS3, KruPS3) 8 2 daughter Sr (LitLS3, KruPS3, KurcBSS) p^i 3.15 max 7 iKr X-rays. 0.511 (192%. 7*). i 0.777 (9%) daughter (LitLS3, KruP53, KurcBSS) Rb®®™ 6.3 h (KarrDSO) 6.5 h (HancJ40) A EC 94%. p’*' 6% (KarrDSO) [EC 79%. p,"^ 21%] (NDS) -76.14 (LHP. MTW) A chem (HancJ40) chem, mass spect (ReynF49) not daughter Sr^^, lim 0.1% (LitL53, CastS52) p"*^: 0. 78 max 7 iSr X-rays. 0.511 (7^^). 0.554 (66%). 0.619 (41%). 0.698 i (277o). 0.777 (83%). 0.828 (25%). 1.044 (29%). 1.317 (26%). 1.475 ( 17%) Br^^(a, n) (HancJ40, ReynF49, KarrDSO) Kr®^(d, 2n) (HancJ40) Rb®® 83 d (CastSSO) 100 d (KurcB55) 107 d (KarrDSO) •A A EC (KarrDSO) no p'*' (PerlmMSS) -79 (MTW) A chem, mass spect (KarrDSO) j U4. *. ir 83m daughter Sr, parent Kr (CastSSO) Y|Kr X-rays, 0.53 (93%, 3 V rays), 0.79(0.9%) e": 0.007, 0.52 : daughter radiations from Kr^^*^ Br^^(a, 2n) (KarrD* '-)! daughter Sr** (< ..•iS' DotIMa) Rb®4 33.0 d (WelJ55) 34 d (KarrDSO) A EC 76%. p"^ 21%. p" 3% (NDS) -79.753 (MTW) A chem, cross bomb (BarbW47) chem, mass spect (KarrDSO) 1.66 max P j 0. 91 max 7 iKr x-rays. 0.511 (42%. 7*). 0.88 (74%), 1.01(0.5%). 1.90(0.8%) 1 Br®* (a, n) (K.> : ; D‘ 1 264 Isotope Z A Half-life Type of decay (*•*); % abundance; Mass excess (Am-A), MeV (C“=0); Thermal neutron cross section (CT), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production ,84m 20 m (CohL58, HancJ40) 21 m (CaiR53) 23 m (FlaASOb) IT, EC (weak) (CaiR53) -79.289 (LHP, MTW) 72.15 (NierA50a) -82.16 (MTW) 0.9 (to Rb®^) 0.1 (to Rb®®"’) (GoldmDT64) chem (HancJ40) chem, excit (FlaASOb) RbX-rays, 0.216(37%), (65%), 0.464 (32%) 0.201, 0.214, 0.449 Br^\a, n) (HancJ40) Rb®^(n, 2n) (FlaASOb) Rb 86 18.66 d (EmeE55a, EmeE55) 18.64 d (NidJ55) 18.7 d (WriH57) 18.8 d (GleG64) others (HelmhA41, RobiR58a) V lp“ (HelmhA41) A -82.72 (MTW) A chem, n-capt (SneA37) chem, excit (HelmhA41) P : 1. 78 max Y I 1.078 (8.8%) Rb®®(n, V) (SneA37, ScheiH38, SerL47b) Rb 86m 1.02 m (SchwaR53) 1.06 m (FlaA51) IT (SchwaR53) -82.16 (LHP, MTW) B chem, excit, n-capt (FlaASl) Y [RbX-rays], 0.56 Rb®®(n, Y) (FlaASl. SchwaR53) 4.8 X 10^^ y sp act 'j (KovA65) 0 10 ' 4. 7 X 10 y sp act (FlyK59, GleL6l) ^ 5.2 X 10^^ y sp act ^ (MNaiA6la, BrinGA65) 5.8 X 10^*^ y sp act (EgeK6l, LeuH62a) 5.0 X 10^° y Sr®VRb®^ ratio (AldL56, OvcG6() 6. 2 X 10 y sp act (MGreM54, CurrS51, FliJ54>:') 5. 1 X 10^*^ y sp act (LibW57) 5. 9 X 10^^ y sp act (LewisG52) 4.3 X 10^^ y sp act (GeeI54) others (FritK56, StraF38, Hax048a, Hax048, KemM49, CharGSl, EklS46, BahI52) P (ThomJOS, CamN06) 27.85 (NierASOa) -84.591 (MTW) 0.12 (GoldmDT64) ’J'corrected for 27.85% abundance (NDS) A chem (ThomJ05, CamN06) chem, genet (Hah037, MattaJ3 7) chem, mass spect (HemA37) parent (mass spect) (Hah037, MattaJ37) P i 0.274 max Y : no Y 17.8 m (GlasG40, BunkM 5 1 ) 17.7 m (ThuS52b) 17.5 m (WeilG42) 18 m (HahO40b, SneA37) y ip (Hah039c) A -82.7 (MTW) , complex), 3.06 (1.3%), 3.53 (1.1%) fission (Hah043, Hah043b, KatcS48, KniJD59, FritK6l, DUCSla) Zr®®(d, a) (SchoG53) y’5 10.9 m (FritK61) 10.5 m (KniJD49) A p” (KniJD49) -81 (MTW) B chem, sep isotopes, excit (KniJD49) daughter Sr^^ (FritK6l) y 1.30 (?), 1.80 (?) fission (FritK6l, KniJD59) Zr®®(Y, p) (KniJD49) 2. 3 m (ValllD61) A p” (ValliD61) -79 (MTW) B chem, excit (ValliD6l) P" y 3. 5 max 0.7, 1.0, 1.5 (complex) 9A Zr (n, p) (VaUiD61) 7-15 m genet (ZaitN65) [p'^. EC] (ZaitN65) E chem, genet ( ZaitN 6 5 ) , - 81 „,81 ancestor Sr, Rb ( ZaitN65) . 1,89 protons on Y (ZaitN65) Zr«' 10 m genet (ZaitN65) V [p'^. EC] (ZaitN65) D chem, genet (ZaitN65) * ^82 ^ ^ 82 parent Y, ancestor Sr (ZaitN65) 8 9 protons on Y (ZaitN65) 7 83 Zr 5-10 m genet (ZaitN65) fm [EC. p"^] (ZaitN65) E chem, genet (ZaitN65) 8 3 ancestor Sr { ZaitN65) 8 9 protons on Y (ZaitN65) 7 84 Zr 16 m genet (ZaitN65) V [EC, p"^] (ZaitN65) B chem, genet (ZaitN65) parent (ZaitN65) 8 9 protons on Y (ZaitN65) Zr®5 Zr 15 m (ZaitN65) 6 m (ButeF63) • [EC. p"^] (ButeF63) B chem, genet (ButeF63, ZaitN65) , __85m. _ 85m parent Y, ancestor Sr (ButeF63, Dosl63a, ZaitN65) 8 9 Y (p, 5n) (ButeF63) 7 85 Zr 1.4 h genet (ZaitN65) [EC. p'^] (ZaitN65) B chem, genet (ZaitN65) parent Y®® (ZaitN65) 8 9 protons on Y (ZaitN65) 7 86 Zr 16.5 h (AwaY64) 17 h genet (HydE51) 15 h genet (ZaitN65) A EC, no lim 0.1% (HydE66, HydE54a) -78 (MTW) A chem, genet (HydESl) parent (HydESl) y e Y x-rays, 0.028 (20%), 0.243 (96%), 0.612 (5%) [0.015] 86 daughter radiations from Y Y®’(p,4n) (Aw»Y64) „ 87 Zr 1.6 h (HydE51) 1.5 h (ButeF63. HoltzR52, ZaitN65) 2.0 h (RobeB49) V A P"^, EC (RobeB49) [p'^ 83%. EC 17%] (NDS) -79.7 (MTW) A chem, excit, sep isotopes (RobeB49) chem, genet (HydESl) parent Y®"^^ (HydESl) y 2. 10 max Y x-rays, 0.511 (Y*, [166%]), 1.2, 2.2 daughter radiations from Y®^^, ^87 Y®’(p. 3n) (ButrF6>. AwaYM) _ 88 Zr 85 d (HydE53a) M A EC (HydESl) no p"*” (HydE55) -84 (MTW) B chem, genet (HydESl) parent Y®® (HydESl) descendant Mo®® (ButeFfnlc) y e Y X-rays, 0.394 (97%) 0.377 daughter radiations from Y®® protr.n* on Nb 'Hy • 7 89 Zr 78.4 h (VPatD64) 79.0 h (Hamij60) 79.3 h (ShuK51) others (HydE51, KatzL53, DubL40, ShoF53, HowD62) A EC 78%, p'^ 22% (VPatD64, MonaSbl) -84.85 (MTW) A chem excii (SagR38, DubL40) parent Y®^ (GoldhMSl) daughter Nb®^ (DiaR54, MathHSS descendant Mo®^ (ButeF64c) e y 0. 90 max 0.89 (with Y®’^) Y X-ray«, 0.511 (44%. Y*). 0 91 (99%. with Y®’^). 171(1%) VPalDM) M. if * U 270 Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A),MeV (C'==0); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production cross section (t7), barns 7 89m 40^^ 4. 18 m (VPatD64) 4.4 m (ShoF53, ShoFSl, MangS63) 4.3 m (KatzL53) 4.5 m (DubL40) V A IT 94%. EC 4.7%, p'* 1.4% (VPatD64) IT 93%. EC 5.6%. p'* 1.8% (ShoF53) -84.26 (LHP. MTW), A chem, excit {DubL40) daughter Nb®^^ (DiaR54, MathH55) e V 2.40 max (0.2%), 0.89 max (1.2%) 0.570 Zr, Y X-rays, 0.588 (87%). 1.51 (6%) Y®’(p.n) (VPatD64, DubL40) % 51.46 (WhiJ48) A -88.770 (MTW) IT C 0,1 (GoldmDT64) 0.80 s (WagR63) 0.83 s (SchmW63, CamE55) 0.86 s (WhiW62) Y A IT (CamE55) -86.45 (LHP, MTW) A excit (CamE55) genet energy levels (SchmW63, BjoS59) V e Zr X-rays. 0.133(4%), 2.18 (14%). 2.32 (86%) 0.115. 0.130 Nb^^(p, a) (WhiW62) Zr^*^(n, n') (CamE55. WagR63, SchmW63) % 11.23 (WhiJ48) A -87.893 (MTW); O’ C 1 (GoldmDT64) 7 92 Zr % 17.11 (WhiJ48) A -88.462 (MTW) (T C 0,2 (GoldmDT64) 7 93 Zr 1. 5 X 10^ y sp act (SteinE65) V A (T C P (SteinE50) -87.11 (SteinE65, MTW) <4 (GoldmDT64) A chem (SteinESO) mass spect (GleL53) parent Nb’^*” (GleL53) V 0.060 max no Y daughter radiations from Nb^^*^ fission (SteinESO) 7 94 Zr % 17.40 (WhiJ48) A -87.267 (MTW) (T C 0.08 (GoldmDT64) 7 95 Zr 65. 5 d (FlyK65a) 65 d (BradE51a, GrumW46, CorkJ53b) 66 d (GrossA48) 63 d (SagR40a) y A P (SagR40a) -85.663 (MTW) A chem (GrossA40, SagR40a) chem, genet (GoldsB51) parent Nb^^^, parent Nb^^ (HudJ49. BradESla, JacoL51, SteinESla) P' Y 0.89 max (2%), 0.396 max 0.724 (49%), 0.756 (49%) 95 daughter radiations from Nb, Zr^^(n, y) (SagR40a, SerL47b) fission (HudJ49, BradESla, JacoLSl, SteinESla, FinBSlc) 9 5 descendant Kr, descendant Rb’^ (DUC51) 7 96 Zr >3-6 X 10^^ y % 2.80 (WhiJ48) sp act (AwsM56) A -85.430 (MTW) tj/2 (PP) >5 X 10^^ y ■"c 0.05 (GoldmDT64) sp act (AwsM56) *1/2 ^PP) ^ ^ ^ sp act (MCarJ53) 7 97 Zr 17.0 h (BurgW50a, MandeC52, GrossA40, KatcSSlb, Vasil 58) ¥ A P (GrossA40) -82.93 (MTW) A chem (GrossA40) chem, n-capt, sep isotopes (BurgWSOa, MandeC52) parent (BurgWSOa) P‘ Y 1.91 max 0.747 (92%, with Nb’^*") 97 daughter radiations from Nb Zr^^(n, Y) (BurgW50a, MandeC52, SagR40a, SerL47b) fission (GrossA40, Hah041, KatcS48) 7 98 Zr 1 m (OrtC60) V [p~] (OrtC60) E chem, genet (OrtC60) fission (OrtC60) A -82 (MTW) [ parent <2 m Nb^^j, not parent 51 m Nb^^ (OrtC60) 7 99 Zr 35 s genet (OrtC60) G chem, genet (OrtC60) activity not observed, fission (OrtC60) <1.6 s genet (TroD63) ,v,u88 4lNb 14 m (KorR64, HydE65) 21 m (ButeF64b) ¥ A P"* (HydE65), [EC] -77 (MTW) B chem, genet (KorR64, HydE65, ButeF64b) 88 daughter Mo (ButeF64c) Y 3. 2 max 0.076, 0.141, 0.272. 0.399, 0.511 (y*), 0.671, 1.058. 1.083 Br^’(C*^. 3n) (KorR64, HydE65) ktu89 Nb 1.9 h (HydE65, DiaR54, MathH55) 2.0 h (ButeF64b) ¥ A p"*" (DiaR54), [EC] -81.0 (MTW) A chem, genet (DiaR54, MathH55) 8 9 parent Zr (DiaR54, MathH55) Y 2. 9 max 0.511 (y*), 1.626, 3.577. 3.838 8 9 daughter radiations from Zr C*^ on Br (MathH55, HydE65) Y®’(a, 4n) (MathH55) 271 luKupc Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A), McV (C’^=0); Thermal neutron I Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion cross section ((7), barns ^,Nb 42 m (ButeF64b) a*48 m (DiaRS4) V A p'* (DiaR54), [EC] -80.2 (LHP. MTW) A chem, genet (DiaR54, MathH55) parent (DiaR54, MathH55) 8 9 daughter Mo (ButeF64c) . e y 3, 1 max 0.570 (with Zr®*") 0.511 (Y*), 0.588 (93%. with _ 89m Zr ) daughter radiations from Zr on Br (MathH55) protons on Zr (DiaR54) Nb’O 14.6 h (OngP54a, ShelR57a) 14.7 h (DiaR53, ButeF64b) others (KiinD49, JacoLSl) A P”^, EC (BjoS59, LazN58, ShelR57a) EC(K) =50% (KuzM57) -82.66 (MTW) A chem, excit, cross bomb ( JacoE51) chem, sep isotopes, cross bomb (KunD4 9) 90 descendant Mo ^ (DiaR53, MathH55b) e Y 1. 50 max 0.115, 0.123 Zr X-rays, 0.142 (75%), 0.511 (Y^^), 1.14 (97%,), 2.18 (14%,), 2.3 2 (82%,) dau^ter radiations from Zr^^^ included in above listing Zr^°(p, n) (BjoS59, LazN58) 90 Zr (d, 2n) (KunD49, JacoLSl) descendant Mo^ ( Bute F 64b, DiaR53) Nb’®^ 24 s (MathHSSb) M A IT (MathH55b) -82.54 (LHP. MTW) A chem, genet (MathH55b) 90 daughter Mo’ (MathH55b) Y e Nb X-rays, 0.122 (71%) 0.104, 0.120 90 daughter Mo (MathH55b) Nb’* long (OvaJSl) [EC] (OvaJ51) B genet (OvaJSl) Y [Zr X-rays] Zr^°(d,n) (OvaJ51) A -86.8 (MTW) [daughter Nb^^^] (OvaJSl) Nb’'"’ 64 d (BoydG4 9) 60 d (JacoL51) A IT 97%, EC 3% (NDS) -86.6 (LHP. MTW) A chem, excit (JacoLSl) chem, sep isotopes (OvaJSl) Y e Nb x-rays, 0.104(0.5%,), 1.21 (3%) 0.086, 0.102 o g Y (a, 2n) (HaywR55a) Zr’°(d. n) (OvaJ51. HayvrR55a, JacoLSl) Nb’^ >3 50 y or < 1 h (BunkM62) A -86.45 (ShelR64, MTW) F 93 levels observed in Nb (d, t) reaction (ShelR64) and in Nb (p, d) reaction (SweR64) Nb’^ 10.16 d (BunkM62) 10. 15 d (WestH59) others (GlagV61, MacD48, SagR40b, SagR38a) M A EC 99-f%>. p'^ 0.06% (WestH59. BunkM62) no p, lim 0.05% (PreiP51) -86.32 (ShelR64, MTW) A chem, excit (SagR38a) Y Zr X-rays, 0.934 (99%,) Y®’(n.n) (BunkM62) Nb’^ 13 h (JameR54) G chem, excit (JameR54) activity not observed (SilE58, BramE62, BunkM62, BosH64b) 93 protons on Nb ( JameR54) Nbl' % 100 (SamM36a. WhiF56) A -87.204 (MTW) (T C 0.1 (to Nb^) 1 /a. •i.Ti_94m. 1 (to Nb ) (GoldmDT64) Nb^^”’ 13.6 y (FlyK65a) =4 y (Sch\imR54) •A A IT (SchumR54) -87.173 (LHP, MTW) A chem, genet (GleE53) daughter Zr^^ (85%) (GleL53) daughter Mo^^ (HohK64) Y e Nb X-rays 0.011, 0.028 daughter (ClcL53* Nb^^(n, n ') (SchumR54. HohK64) Nb’^ 4 2.0 X 10 y sp act, mass spect (SchumR59a) 4 1.8 X 10 y sp act (RolW55) •A A no EC (DouDL53) no EC(K), lim 6% (SchumR5 9a) -86.35 (MTW) A n-capt (GoldhM46a) chem, n-capt (HeiR52) P' Y 0.49 max 0.702 ( 100%), 0.871 (100%) Nb’®(n. Y) (ColdhM4M. HeiR52) 2. 2 X 10^ y sp act (DouDL53) O' c =15 (GoldmDT64) Nb’^ 6.29 m (KilP62) 6.6 m (SagR40b) •A IT 99-t%, p" 0.2% (ReicC63. YinL62) IT 99+%. p“ 0.5% (KHP62) A n-capt, excit (PoolM37, SagR38a, GoldhM48a. KunD46) Y e Nb X-rays, 0.871 (0.2%) 0.023, 0.039 Nb’^(n, 11 fPoclM SagR38i, SagH4‘b. SerL47b) A -86.31 (LHP, MTW) Nb’^ 35.0 d (WyaE6l) 35.6 d (PierA59) 35 d (CorkJ53a, EngeDSl) others (JacoE51, LangeL63, FlyK6Sa) •A A <7 C p" (GoldsBSl) -86.784 (MTW) =7 (GoldmDT64) A chem (GoldsB46, GoldsBSl) chem, excit, cross bomb (JacoLSl) daughter Zr^^ (HudJ49, BradESla, SteinESla, JacoLSl) Y 0. 160 max 0.765 (100%) da light f 7 H * 4 Brad: ' ,4 Ja -t ', Strlr> ' daughter Nb^^^ (SteinESla, LeviJSla) -, - .1 Ill Isotope Z A Half-life Type of decay ( ); % abundance; Mass excess (A=M-A).MeV (C^=0); Thermal neutron cross section ((7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 90 h (SteinESla, HudJ4 9, DrabGSS) 84 h (SlaH52a, SlaH53) A IT (SteinESla) -86.549 (LHP. MTW) A chem (EngeD46, EngeD51a) chem, genet (SteinESla) daughter Zr^^ (HudJ49, BradESla, JacoLSl, SteinESla) parent Nb^^ (SteinESla, LeviJSla) V e Nb x-rays, [0.235] 0.216 95 daughter radiations from Nb daughter Zr^^ (HudJ49, BradESla, JacoLSl, SteinESla) Mo^^(d, a) (JacoL51, BoydG49) Zr^^(d, n) (JacoL51) t.,u96 Nb 23.35 h (KunD49) 23.5 h (MonaS62) A p' (KunD49) -85.64 (MTW) A chem, excit, sep isotopes (KunD4 9) f y 0. 7 max 0.459 (28%), 0.569 (59%), 0,778 (97%), 0.811 (14%), 0.851 (22%). 1.092 (49%), 1.200 (21%) 96 Zr (p, n) (KunD49) Mo^^(d, a) (BornP63c) ivtu97 Nb 72 m (MandeC52) 74 m (BurgWSOa) 75 m (GrossA40) A P (GrossA40) -85.61 (MTW) A chem, genet (GrossA40) daughter Nb^"^^ (SaraB55a) P" V 1. 27 max 0.665 (98%) 97 descendant Zr (GrossA40, BurgWSOa) ... 97m Nb 1.0 m (BurgWSOa) A IT (BurgWSOa) -84.86 (LHP, MTW) A chem, excit, sep isotopes, genet (BurgWSOa) daughter (BurgWSOa) parent Nb^*^ (SaraBSSa) Y e 0.747 (98%) 0.728 97 daughter radiations from Nb ■ 97 daughter Zr (BurgWSOa) Nb 51 m (OrtCbO, WahA62, TakaK61) others (BoydG49) A (BoydG49) -83.5 (OrtC60, MTW) B chem, sep isotopes (BoydG49) chem, genet energy levels (OrtC60) 98 not daughter Zr (OrtC60) P" Y 3.1 max 0.330 (9%). 0.720 ( 75%), 0.787 (100%), 1.16 (30%), 1.44 (10%), 1.52 (4%), 1.68 (10%), 1.88 (4%). 1.93 (8%) Mo^®(n, p) (OrtC60, TakaK61, WahA62) ivtu98 Nb <2 m (OrtCbO) p" (OrtCbO) F genet, excit (OrtC60) go [daughter Zr ] (OrtC60) p" high-energy |3 fission, daughter Zr^^ (OrtC60) 99 Nb^^ 2.4 m (OrtC60) 2.3 m (TroD63) 2. 5 m (Du£R50) A p* (DufRSO) -83 (MTW) A chem, excit, sep isotopes (DufRSO) chem, genet (OrtC60) 99 parent Mo (OrtC60) P" Y 3. 2 max 0. 100 (t 1), 0,260 (t 1) fission (OrtC60, TroD63) Mo^°°(Y, p) (Du£R50) 99 Nb^^ 10 s genet (TroD63) V p” >52% (TroD63) C chem, genet (TroD63) 99 parent Mo (TroD63) fission (TroD63) T.T0.100 Nb 3.0 m (OrtCbO) A [p“] (OrtC60) -80 (MTW) B chem, genet energy levels (OrtC60) Y 0. 140 (T 10). 0.36 (t 55). 0.45 (t 40), 0.53 (t 100, complex), 0.65, 2.2, 2.3, 2.65, 2.85 fission (OrtC60) IVTulOO Nb 11 m (TakaKbl) A p~ (TakaKbl) -80 (MTW) C chem, genet energy levels (TakaK6l) P” Y 4.2 max (£10%), 3. 5 max 0.535 (t 100). 0.62 (t 60), 1.04 (T 10), 1.15 (t 10), 1.47 (t 5) Mo^°°(n, p) (TakaKbl) TVTvlOl Nb 1.0 m genet (OrtCbO) V [p"l (OrtC60) B chem, genet (OrtC60) parent Mo^*^^ (OrtC60) fission (OrtC60) >< 88 42>^° 27 m (ButeF64c) 'i* p'^ (ButeF64c), [EC] B chem, genet (ButeF64c) parent Nb^^, ancestor Zr^^ ( ButeF64c ) P" Y 2. 5 max 0.511 (Y^^), 2.69 daughter radiations from Nb^^ protons on Nb, Mo (ButeF64c) XX 89 Mo 7 m (ButeF64c) V P'^ (ButeF64c), [EC] B chem, genet (ButeF64c) , -.,89m. - 89 parent Nb, ancestor Zr (ButeF64c) P^ Y 4. 9 meLX 0.511 (V*) daughter radiations from Nb^^ protons on Mo (ButeF64c) XX 90 Mo 5.67 h (PettH66) 5.7 h (DiaR53) 6.3 h (KU2M57) others (KurcB55) A EC 75%. p'*' 25% (CoopJ65) -80.17 (PettH66. MTW) A chem, genet (DiaR53, MathHSSb) 90 ancestor Nb (DiaR53, MathHSSb) parent Nb^^^ (MathHSSb) P" e Y 1. 2 max 0.104, 0.120, 0.239, 0.255 NbX-rays, 0.122(71%), 0.257 (85%), 0.445 (9%), 0.511 (50%, Y^), 0.945 (10%), 1.273 (8%), 1.389 (4%), 1.46(4%, doublet) 90 daughter radiations from Nb (daughter radiations from Nb included in above listing) Nb^^(p, 4n) (DiaR53, MathHSSls, CoopJ65) Zr^^(a, 4n) (CoopJ65) 273 Ivocopr / A llulflifc Type of decay (••• ); % abundance; Mass excess (A=M-A), McV (C‘=0); Thermal neutron cross section (t7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production Mo 93 IS -19 m (EbrT65) IS. 5 m (DufR4 9b, WalH48, KatzL53) others (AxeP55. BotW39. SagR38) 64 B ( PrenJ57) 66 8 (KatzL53, AxePSS) 73 B (WafH48) 75 B (DufR49b) (ECEC) >4x 10 y (WintR55) 93m >100 y genet (HohK64) 6.95 h (BoydG52b) 6.75 h (KunD50) Mo 95 96 99 66.7 h ( CrowP65) 66.0 h (GunS57) 67.0 h (WriH57) others (SeaG39, CorkJ49a, VasiI58, WafH48, SagR40a) tj /2 (PP) ^3 X 10^'^ y sp act (WintR55) others (FremJSZ) 14.6 m (MauW41, WileDR54, OKelG57) p'* (SagR38), [EC] -82.3 (MTW) IT =57%, p + EC =43% (SmiF56) IT =70%. p”^ + EC =30% (AxeP55) -81.6 (LHP, MTW) 15.86 (WilliD46) -86.804 (MTW) <0.3 (to Mo^^) <0.006 (to Mo^^™) (GoldmDT 64) EC (BoydG4 9a) -86.79 (MTW) IT (KunDSO) -84.36 (LHP, MTW) 9.12 (WilliD46) -88.407 (MTW) 15.70 (WilliD46) -87.709 (MTW) 14 (GoldmDT64) 16.50 (WilliD46) -88.794 (MTW) 1 (GoldmDT64) 9.45 (WilliD46) -87.539 (MTW) 2 (GoldmDT 64) 23.75 (WilliD46) -88.110 (MTW) 0.51 (GoldmDT64) P" (SagR38) -85.96 (MTW) 9.62 (WilliD46) -86.185 (MTW) 0.2 (GoldmDT 64) J (SagR40a) A -83.50 (MTW) A i excit (BotW37) ichem, excit (SagR38) ichem, sep isotopes, excit i (K\inD4 9a. DufR4 9b) I . chem, sep isotopes (DufR49b)'p chem, n-capt (BoydG49a) genet (HohK64) parent Nb^^™ (85%) (HohK64) chem, excit (KunD46) chem, excit, cross bomb, sep isotopes (KunDSO) chem, excit (BoydGSZb) chem, mass spect (AlbuD53, BernaR53) 93 not daughter Tc (BoydGSO) chem, n-capt, excit (SagR38, SagR40a) parent Tc^^^ (SeaG39, SagR40a, MedH49*, GleLSld, MihJSl) ' ^ daughter Z.4 m Nb (OrtC60) QQ daughter 10 s Nb^ (TroD63) 99 ancestor Tc (MotE47a) chem, n-capt (SagR40a) parent Tc^^^ (SagR40, BotW41, Hah041a, Hah041b, MauV.'41) daughter Nb^^^ (OrtC60) 3.44 Nb X- -rays, 0.511 (y"^) 3.99 max (T 15), 0.638 Nb X-rays, Mo X-rays, 0.511 (Y [76%]), 0.658 (54%), l.Zl (ZZ%), 1.53 (15%) 91 daughter radiations from Mo Mo^^(n, 2n) (KunD49a, HeyF37, SagR38, SagR40a, BrolJ52, EbrT65) 92, 2.78 max (T 100) Mo (Y,n) (DuIR49b) Nb X-rays daughter radiations from Nb 93m Mo X-rays, 0.264 (58%), 0.685 (100%), 1.479 (100%) 0.244, 0.261 2. 23 max 0. 170 0. 191 (25%), 0.51 ( 15%), 0. 7 (21%), 0.70 ( 1 1%), 0.89 (1 1.02 (25%), 1.18 ())' ,. 1.38 (9%), 1.56 ( 11-.). 2.08 ( 16 .) daughter radiations from Tc*^* Mo^^(n, V) (BoydG49a) Nb’^(p, n) (HohK64) Nb’^(d, 2n) (AlbuD53, KunD46, WieM46, KunDSOa) 90 Zr (a,n) (KunDSO) Nb^^(p, n) (BoydG52b, - ForC53) 1. 23 max Tc X-rays, 0.041 (2%), 0.181 (7%), 0.372 ( 1%), 0.740 ( 12%), 0.780 (4%) daughter radiations from Tc^^ qo Mo"" (n, V) (S*gR40, SagR40a, MauW4 1. ScrL47b. HumV^l. fission (HahO:'9b, SagR40a. Katc"-^ Ic, KatcS48, FinB U) %cH4ol > rL;T'.. 274 Isotope Z A Half-life Type of decay (^* ); % abundance; Mass excess (A=M-A), MeV (C'==0); Thermal neutron cross section (£7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (McV) and intensities Principal means of production 42M0 11.5 m (FleJ54) 11.0 m (WileDR54a) 12 m (Hah041a) A p“ (Hah041a) -84 (MTW) D chem (Hah041a) parent 5 s (Hah041a, Hah041b, FleJ54) p 1. 2 max daughter radiations from 5 s Tc''’^ fission (Hah041a, FleJ54, WileDR54a) 103 Mo 62 s genet (VBaeA65) 70 s (KieP63a) M [p“] (KieP63a) B chem, genet (KieP63a) parent (KieP63a) fission (KieP63a, VBaeA65) 104 Mo 1. 1 m (KieP62) 1.6 m (TerG64) V p" (TerG64) B chem, genet (KieP62) chem, excit (TerG64) 1 04 parent Tc (KieP62) P" Y 4.8 max 0.070 104 daughter radiations from Tc fission (TerG64, KieP62) 105 Mo 40 s (KieP62a) 42 s genet (VBaeA65) others (FleJ55a, FleJ56a, SeeW47) p” (BomH43b) B chem, genet (BornH43b, KieP62a) ancestor (BornH43b, KieP62a) parent Tc^^^, ancestor Rh^*^^ (KieP62a, BomH43b, FleJ55a) fission (BornH43b, FleJ55a, FleJ56a, KieP62a, VBaeA65) 4.4 m (VLieR64) A p"^ =92%, EC =8% (VLieR64) -78.8 (MTW) B chem, sep isotopes (MotE48, VLieR64) P" V 4. 1 max Mo X-rays. 0.090 (20%), 0.14 (67%). 0.24 (30%). 0.33 (90%), Mo^^(d, 2n) (MotE48, VLieR64) 0.511 (184%, Y*). 0.79 (95%). 1.54 ( 100%) Tc’2 2.75 h (KunD48a) 2.7 h (VinG62, MotE48, DelL3 9) A EC 87%. p"^ 13% (VinG62, LeviC54a) -83.60 (MTW) A chem (SeaG3 9) chem, excit, sep isotopes (KunD48a) not parent Mo^^*^ (BoydGSO) P^ Y 0.80 max Mo x-rays, 0.511 (26%, Y*), 1.35 (65%). 1.49 (33%) Mo’^(d, n) (KunD48a, MotE48, SeaG3 9, VinG62) Mo’^(p, Y) (KunD48a, DelL3 9) 43 m (MedHSO, VinG62) 47 m (K\inD48a) A IT 82%, EC 18% (VinG62) -83.21 (LHP, MTW) A chem, excit, sep isotopes (KunD48a) mass spect (BernaR54) chem, mass spect (LeviC54a) Y e Tc X-rays, Mo X-rays, 0.390 (63%), 2.66 (18%) 0.369 93 daughter radiations from Tc Mo’^(d,n) (EasH53, BernaR54, VinG62) Mo’^(p, Y) (EasH53) Nb’^(a, 4n) (EasH53) 293 m (Matuj63) 270 m (MonaS62a) V EC 89%, p"^ 11% (Hamij64) EC 93%, p'^ 7% (Mat\iJ63) A excit (MonaS62) chem, excit, cross bomb (Matuj63) Y 0.816 max Mo X-rays, 0.511 (22%, Y*), 0.702 (100%), 0.849 ( 100%), 0.871 (100%) Nb^^(a, 3n) (Matuj63) Mo’^(d, 2n) (MatuJ63, MonaS62a, HamiJ64) EC 86%, p"^ 14% (MonaS62a) A -84.15 (MTW) Tc94m 53 m (MedHSO, MonaS 62) 50 m (MotE48a) p"^ 66%, EC 34% (Hamij64) p'*’ 72%, EC 28% (MonaS 6 2a) p”^ 61%, EC 39% (Matuj63) A chem, excit (GugP47) chem, excit, sep isotopes (MotE48a) genet energy levels (HamiJ64) daughter Ru'^'^ (VWieA52) P^ Y 2.47 max Mo x-rays, 0.511 (132%, Y*), 0.871 (91%). 1.53 (10%). 1.87 (9%), 2.73 (5%). 3.20 (2%) Nb’^(a, 3n) (MatuJ63) 04 Mo (d, 2n) (MotE48a, MonaS62, MatuJ63, Hamij64) 04 Mo^(p,n) (GugP47, Hube048a, MedHSO) A -84.04 (LHP, MTW) 20.0 h (VinG62, EggD48) 20 h (MotE48a) A EC (EggD48) no p'^ (MedHSO) -86.05 (MTW) A chem, sep isotopes (EggD48, MotE48a) Y Mo X-rays. 0.768 (82%), 0.84 (11%), 1.06(4%) Mo^^(p, n) (EggD48, MedHSO) Mo^(d,n) (VinG62) Mo^^(d, 2n) (MotE48a) T,.95nt 61 d (UniJ59) 60 d (MedHSO) 62 d (CacB39) 52 d (EdwJ47) V A EC 95%, p'^ 0.42%, IT 4% (UniJ59, MedHSO. MedHSOa, CreT65a) -86.01 (LHP, MTW) A chem (CacB37, CacB39) chem, sep isotopes (MotE48b) P^ e Y 0. 68 max 0.019, 0.036, 0.184 Mo X-rays. 0.204 (70%), 0.584 (36%), 0.78 (12%. complex). 0.823 ( 9%), 0.838 (27%), 1.042 (4%) Mo^®(p,n) (EdwJ47) Mo^(d.n) (CacB37, CacB39, UniJ59) Mo’^(d, 2n) (MotE48b) daughter radiations from Tc 4.35 d (MedHSO) 4.20 d (CobJSO) 4.3 d (MonaS62, EdwJ47) 4.2 d (MotE48b) A EC (MotE48b) no p"^ (MedHSO) -85.9 (MTW) A chem (EwiD39) chem, excit, cross bomb (EdwJ47) chem, excit, sep isotopes (MedH52) Y e Mo x-rays, 0.32 (5%). 0.778 (100%), 0.81 (84%), 0.851 (100%), 1.12 (16%) 0.30, 0.75, 0.79, 0.82 Nb^^(a, n) (EdwJ47) 275 Type of decay ); % abundance; Mass excess Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities 1 Principal means 1 of production tv4iIi>|K / A lUIMifc (A=M-A), MeV (C'==0); Thermal neutron cross section (<7), barns i T, 62m (MedH50, EasH53) L IT (MedH50) B chem, excit (MedHSO) Tc X-rays Nb^^(Q,n) (EasH53) 1 A p'^ =0.01% (EasH53) -85.8 (LHP. MTW) chem, excit, sep isotopes (MedH52) e 0.013, 0.032 daughter radiations from Tc*^^ T,” 6 X 10^ y yield EC (BoydG54) A genet (BoydGSla) V Mo X-rays 96 97 - Ru’ (n, Y)Ru’ (p ) (K.itcS58a) others (BoydG54) A -87 (MTW) chem (KatcS58a) [daughter Tc^^^] (BoydGSla) daughter Ru^'^ (99+%) (KatcS58a) Mo^^(d, 2n) (BoydG54) (KatcS58a) Tc97m 91 d (BoydG54, ... IT (HelmhA41a, EdwJ47) A chem (PerrC37, CacB37) V Tc X-rays Mo^^(d,n) (CacB37, HelmhA4 la) A -87 (LHP, MTW) chem, genet (MotE47) 0.075, 0.094 PerrC37, CacB39) 90 d (MotE48b, GugP47, CacB37) 87 d (UniJ59) 95 d (EdwJ47) excit, sep isotopes (MotE48b) 97 daughter Ru (0.04%) (KatcS58a) Mo^^(p, n) (EdwJ47) Mo^^(d, 2n) (MotE48b) 96 97 Ru’ (n, Y)Ru’ (p ) (KatcS58a) Tc’8 1. 5 X 10^ y sp act M p" (KatcS55) A chem, mass spect (BoydG55) p" 0. 30 max go Mo’ (p,n) (BoydG55) (OKelG56b) others (KatcS55) A -86.5 (MTW) 3 (to Tc^*") y 0.66 ( 100%). 0.76 ( 100%) Ru’^(n, Y)Ru’^(|3”) Tc^^(n, Y) (KatcS55, O’. (GoldmDT64) KatcS58a) Tc’’ 2. 12x lO^ysp act V P {LincD51, SchumR51) A chem (LincD46, SchumR46) p" 0. 292 maix fission (IngM47g, (FrieSSl) 2. IBxlO^ysp act (BoydGbO) A (T C -87.33 (MTW) 22 (GoldmDT64) chem, mass spect (IngM47g) daughter Tc^^ (SeaG39, Hah041a) 99 descendant Mo (MotE47a) V no Y LincDSl, SchumR51) Mo^®(n, Y)Mo’^(p”) (MotE47a) Tc’’™ 6.04 9 h (GleG64) ... IT (SeaG39) A chem, genet (SeaG39) Y Tc X-rays, 0. 140 ( 90%) 99 daughter Mo (SeaG39, 6.00 h (ByeD58) others (GleLSld, BaiK53, PortR60, A -87.18 (LHP, MTW) 99 daughter Mo (SeaG39, SagR40a, MedH49, GleLBid, e 0.001, 0.119 SagR40a, MedH49, GleLSld, MihJ51) CreT65) MihJSl) 99 parent Tc (SeaG39, Hah041a) T,100 15.8 s (BoydG52a) V p' (HouR52) A sep isotopes (HouR52) p" 3. 38 max Tc’’(n, Y) (BoydG52a, 17. 5 s (HouR52) 17 s (CsiG63) A -85.9 (MTW) sep isotopes, n-capt (BoydG52a) Y 0.540 (strong), 0.60 (strong), 0.71, 0.81, 0.89, 1.01, 1.31, OKelG58) Mo^°°(p,n) (HouR52) 1.49, 1.8 Rh^°^(n,a) (C81G63) Tc'O' 14.0 m (OKelG57, ... p" (SagR40) A chem, genet (SagR40) p" 1.32 max Mo^°°(n, Y)Mo*°'(p') MauW4i, Hah041b) 14.3 m (WileDR54) 14.5 m (PerlmM48) 16. 5 m (MacD48) A -86.32 (MTW) daughter Mo (BotW41, Hah041a, Hah04ib, MauW41, SagR40) Y 0.13 (3%, complex), 0.307 (Y 91%), 0.545 (Y 8%) (SagR40, SagR40b, MauW41) Tc'°^ 4.5 m (FleJ54, FleJ57) V p“ (FleJ56a) B chem, genet energy levels p" 2 max Ru*°^(n,p) (FlcJ57) A -85 (MTW) (FleJ56a, FleJ57) Y 0.47 fission (FleJSfia) 5 s (FleJ54) ... p" (Hah041a) C chem, genet (Hah041a, p" 4.4 max daughter Mo Others (Hah041a) A -85 (MTW) FleJ54) (Hah041a, HahCMlb. daughter Mo (Hah041a, Fie J 54) Hah041b, FleJ54) 50 s (KieP63a, V p" (KieP63b) B excit (FleJ57) p" 2. 2 max fission (Ki‘jp6’, VBaeA65) 72 s (FleJ57) A -84.9 (MTW) chem, genet (KieP63a) .parent Ru^^^] (KieP63a) daughter Mo (KieP63a) Y 0.135 (f 17), 0.21 (t 10), 0.35 KicP63b, VB Ru (n, np) 1 ■ ' J ' i T,104 18 m (FleJ56a, KieP62) V p” (FleJ56a, KieP62) B chem (FleJ56a) p“ [5.8 max] (weak), 4.6 max fis lion ( Flc J *76., A -82.2 (MTW) chem, genet energy levels (KieP62) Y 0.36, 0.53, 0.89, 1.15, 1.25, 1.37, 1.6 (complex), 1.9, 2.2 Ki. P62;. Ru*°' (1.. p) ■ r • ■ daughter Mo (KieP62) 2.7, 3.2, 3.4, 3.7, 4.0, 4.4. 4.7 7. 7 m (KieP62a) ... p" (BornH43b) B chem, genet (BornH43b) p" 3.4 max fi ..-n :) r ; 7.8 m (VBaeA65) A -82.6 (MTW) 4. r, 105, , ^ 105 parent Ru, daughter Mo Y 0. no r*. J, }. • ' FleJ56a) (BornH43b. FleJ55a, KieP62a) daughter radiations from ancestor Rh^^^ (KieP62a) L 1 1 1 1 373-062 0-70-19 276 Isotope Z A Half-life Type of decay (*•*); % abundance; Mass excess (A=M-A),MeV (C^=0); Thermal neutron cross section (£7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 37 s {VBaeA65) V [p“] (VBaeA65) B chem, genet (VBaeA65) parent Ru^*^^ (VBaeA65) fission (VBaeA65) 29 s (VBaeA65) others (BornH43b) V [p"] (VBaeA65) B chem, genet (VBaeA65) 1 07 ancestor Rh (VBaeA65) fission (VBaeA65) 44 50 s (AteA55a) P''' (?) (AteA55a) E chem, excit (AteA55a) Mo’^(a, 3n) (AteA55a) Ru'4 57 m genet (V"WieA52) - EC (VWieA52) D chem, genet (VWieA52) parent (VWieA52) y [T c X-rays] daughter radiations from Tc^^^ Mo'^^(a. 2n) (VWieA52) Ru” 1.65 h (SchaE56, EggD48) 1.7 h (KurcB55) 1.6 h (MocD48) A EC 85%. p’*' 15% (RieP63) -84.02 (MTW) A chem, cross bomb, sep isotopes (EggD48) y 1.33 max Tc X-rays, 0.340 (70%), 0.511 (30%, 0.625 ( 13%), 1.09 (21%), 1.43 (5%) 95 daughter radiations from Tc Mo^^(a, n) (EggD48) Ru^^(n, 2n) (EggD48, SchaE56, RieP63) Rui' % A (T C 5.46 (OrdK60) 5.57 (WhiF56) 5.50 (FrieL53) 5.7 (EwaH44) -86.07 (MTW) 0.2 (GoldmDT64) 97 Ru 2.88 d (KatcS58a) 2.8 d (MocD48, SulW46, AteA55b, ShpV56) 2.44 d (CorkJ55a) A EC (SulW46) -86 (MTW) A chem, excit (SulW46) chem, cross bomb, sep isotopes (EggD48) parent Tc^^"’ (0.04%). parent Tc’^ (99+%) (KatcS58a) daughter 32 m Rh^*^ (AteA55b) y e Tc x-rays, 0.215 (91%). 0.324 (8%) 0. 194 Ru^^(n, \) (Su 1W46, KatcS58a, CorkJ55a) 94 Mo’ (^»n) (EggD48) D 98 Ru % A . Sc -1 *<8 d. 1 Rh">° 20.8 h (MarqL53a) 19.4 h (LindriM48a) 18 h (AntoN64b) 21 h (SulW51k) A EC 93%, p*" 7% (KoiM64) -85.58 (MTW) A chem (SulW51k, LindnM48a) excit, sep isotopes (BasuB62) daughter Pd (LindnM48a) P^ e Y 2. 62 max 0.516 Ru X-rays, 0.444 (8%), 0. 11 d.>. ,t- r ' (L R ‘ : p It. » (13%, Y*), 0.540 (88‘ ), 0 820 (25%), 1.11 (13%), 1. ‘ ■ 20' -. 1.55 ( 23%), 1.91 (lO'.), 7 (39%), all Y rays compl* x i (d. J 278 Type of decay (••• ); % abundance; Mass excess Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production Isotope Z A Half-life (A=M-A), MeV (C'-=0); Thermal neutron cross section (O'), barns 45^^ 3.0 y (HisK65) [EC] (FarmDSS) B chem (FarmD55) Y [Ru x-rays], 0.127 (88%), 0.198 Ru^^ ^ (p, n) (SharmB60, 5 y (Fa rm D 5 5 ) 10 y (PerrN60) A -87.39 (MTW) genet energy levels, excit (SharmB60) e (75%), 0.325 ( 11%) 0.105, 0.124, 0.176 FarmDSS, PerrN56) 4.4 d (EvaJS65) ... EC 90%, IT 10% A chem, excit (SulWSlj) Y Ru X-rays, Rh X-rays, 0.307 Ru^*^^(p, n) (ScoC52, 4.7 d (KatcS56a) (EvaJS65) genet energy levels, excit (83%), 0.545 (6%) FarmD55, SharmB60) 4.3 d (FarmDSS, LindnM48a) 4. 5 d (ScoC52) 5. 9 d (SulW51j) no (KatcS 56a, (SharmB60) e 0.134, 0.154 Ru^°°(d, n) (SulWSlj, A LindrLM48a) -87.24 {LHP, MTW) daughter Pd (LindnM48a, EvaJS65) ScoC52) Rh'°^ 206 d (HisK61) V EC, p’*', p'; A chem, excit (Mina041) p" 1.15 max Ru^°^(p,n) (FarmDSS, ZIO d (Mina041) 205 d (MGowF6la) others (HoleN47) A pVp~ 0-75 (HisKPl) 0.84 (MarqL54) -86.77 (MTW) Y 1.29 max RuX-rays, 0.475 (57%), 0.511 (25%, V*), 0.628 (4%), 1.103 HisK6l, MGowF61a) _ 101,,, „ 102,,, , Ru (d,n), Ru (d, 2n) (BesD55, BomP61, SulWSli) (3%), 1.37 (0.5%), 1.57 (0.2%) Rh^°^(n, 2n) (Mina041, HoleN45a) Rhl°^ 2. 9 y (BornP63a) ... EC (MGowF6la, B chem, excit (MGowF6la) Y RuX-rays, 0.418(13%), 0.475 Ru^^^(p, n) (MGowF6la) others (MGowF6la, BornP63a) (95%), 0.63 2 (54%, doublet). deuterons on Ru HisK65) 0.698 (41%), 0.768 (30%), 1.05 (41%), 1.11 (22%, doublet) (BornP63a) Rhii' % 100 (CohAA43) A -88.014 (MTW) (T 104 144 (to Rh ) 11 (to Rh^°‘^’^) (GoldmDT64) 57.5 m (JonG56) ... IT (FlaA44, WieM45b) A chem, excit (FlaA44) Y Rh X-rays, 0.040 (0.4%) , ,• ^ 103 daughter Ru 57 m (GleLSle) 56 m (MeiJSOa) 45 m (WieM45b) others (FlaA47a, A -87.974 (LHP, MTW) chem (GleL46a, GleLSle) chem, genet (SulWSlf) daughter Ru^*^^ (SulWSlf) 103 daughter Pd (MeiJSOa, e 0.017, 0.037 (SulWSlf) daughter Pd^^^ (MeiJSOa) FlaA44) BrosA46) Rh‘°4 43 s (Csij63) p" (PonB38a) A n-capt (AmaE35) p' 2.44 max j 1-i. TM-iO^m daughter Rh, 44 s (AmaE35, PonB38a) 42 s (CriE39) EC 0.5% (FrevL65a) genet (PonB38a) daughter Rh (PonB38a, Y RuX-rays, 0.56(2.0%), 1.24 Rh^°^(n, Y) (AmaE35, no p, lim 5x10 % (0. 13%) PoolM37, PoolM38, ( LanghH6 lb) FlaA47a) GrumW46, SerL47b, A -86.95 (MTW) PonB38a, FlaA47a, HumVSl) ), 0.362 (0.067o), 0.498 (O.OllTo) daughter radiations from Rh^^^”' Pd'°^(n, Y) (Brf ■ A ;■ 1 Rh“^"{d. /M.iil '7i7. LlndnM 4 « ■ ) Rh'° (p.n) (J.£,mn: ■ Pdl“4 % 10.97 (SitJ53) 9.3 (SamM36a) A -89.41 (MTW) Pd^” % 22.2 (SitJ53) 22.6 (SamM36a) A -88.43 (MTW) 280 Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A), McV (C'^=0); Thermal neutron cross section (C7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production .. j 46 % A (T C 27.3 (SitJ53). 27.2 (SamM36a) -8 9.91 (MTW) 0.29 (GoldmDT64) ~1 X 10^ y sp act (ParkG4 9) A p“ (ParkG49) -88.368 (MTW), B chem (ParkG49) (3 Y 0. 04 max no Y fission (ParkG49) 21.3 s (StriT57a) 23 s (SchinU58, FlaA52a) A IT (FlaA52a) -88.16 (LHP, MTW) A excit (FlaA52a) n-capt, sep isotopes (SchinU58, WeirW64) genet energy levels (CujB63) Y e Pd X-rays, 0.21 0.19, 0.21 Pd^°^(n,7), Pd^°®(n, 2n) (SchinU58, WeirW64) Pdl°« % A cr c 26.7 (SitJ53) 26.8 (SamM36a) -8 9.52 (MTW) 12 (to Pd^°^) 0.2 (to Pd^°*") (GoldmDT64) Pdl°^ 13.47 h (BranHW62) 13.6 h (MeiW53, BonaG64) 13. 1 h (WafH48) 14. 1 h (MacD48) others {KraJD37, SeiJSl, KondE52, DzaB57) A (3" (KraJD37) -87.60 (MTW) A n-capt (AmaE35) chem, excit (KraJD37) chem, mass spect (RalW46, BergI49) parent Ag^^^^ (SegE41, SiegK49a, SeiJSl) [daughter Rh (SeiJSl) p' e Y 1. 028 max 0.062 (with Ag^°^), 0,084 (with . 109m. Ag ) Ag X-rays, 0.088 (5%, with ^gl09rri)^ 0.129(0.013%), 0.31 (0.010%, doublet), 0.41 (0.010%, doublet). 0.60 (0.03%), 0.64 (0.010%) Pd^°®(n,V) (AmaE35, KraJD37, SerL47b, OrsA4 9, HumVSl) pdl09m 4. 69 m (StarJ59) 4.75 m (StriT57a) others (FlaA52a, MangS62, OkaM63) A IT (KahJSl, FlaA52a) -87.41 (LHP, MTW) A n-capt (KahJSl) excit, cross bomb, n-capt (FlaA52a) n-capt, sep isotopes, excit (SchinU58) genet energy levels (CujB63) Y e Pd X-rays, 0. 188 ( 58%) 0.164, 0.185 Pd^°®(n, V) (FlaA52a, SchinU 58) Pd“° % A c 11.8 (SUJ53) 13.5 (SamM36a) -88.34 (MTW) 0.2 (to Pd^^^ 0.04 (to Pd^^^™) (GoldmDT64) Pd“i 22 m (DzaB57, MGinC52) others (SegE41) A (3~ (KraJD37) -86.0 (MTW) A n-capt (AmaE35) chem, genet (SegE41) parent Ag^^^ (KraJD37, SegE41, JohaSSO) parent Ag ^ ^ (SchinU57) P" Y 2. 2 max 0.38 (t 5), 0.60 (t 13, doublet), 0.81 (t 1). 1.4 (t 8, doublet) daughter radiations from Ag^^^^ Pd^^^(n, Y), daughter Pd^^^^ (AmaE35, KraJD37, SerL47b) p^nim 5.5 h (MGinC52, DzaB57) A IT 75%. 25% (MGinC52) -85.8 (LHP, MTW) A chem, genet (MGinC52, DzaB57) parent Ag^^^ (MGinC52, DzaB57) P" e Y 2. 0 max 0.148, 0.169 Pd X-rays, 0. 17 daughter radiations from Pd^^\ .111m .111 Ag, Ag Pd^^°(n,V) (DzaB57, PraW60) Pd^^°(d,p) (MGinC52, EccS62) Pd“2 21.0 h (GirR59k) 21 h (SeiJSl) A p" (NisY40b) -86.27 (MTW) A chem, genet (NisY40b, SegE41) parent Ag^^^ (NisY40b, NisY40, SegE41, SeiJSl) p" e Y 0. 28 max [0.016] [Pd L X-rays], 0.019 (20%) daughter radiations from Ag^^^ fission (SegE41, TurASla, KatcS48, NisY40b, NisY40, SeiJSl, GoeR49, NewA49) Pd“' 1.4 m (AlexJ58) 1.5 m (HicH54, PouA60) [p“] (HicH54) A chem, genet (HicH54, AlexJ58) parent 5.3 h Ag^^^ (HicH54, AlexJ58) . 1 A 113 parent 1.2 m Ag (AlexJ58) Y no Y daughter radiations from 5.3 h A, , ,. 113 Ag and 1.2 m Ag fission (AlexJ58, HicH54) Cd^^^(n, a) (PouA60) Pd 2.4 m (AlexJ58) [p‘] (AlexJ58) D chem, genet (AlexJ58) parent 5 s Ag^^"^ (AlexJ58) . * ^ A 114 not parent 2 m Ag (AlexJ58) Y no Y fission (AlexJ58) 281 Type of decay ( ^ ); Uocopc / A lUlf-lifc % abundance; Mass excess (A=M-A), MeV (C"=0); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production cross section (C7), barns 46^-*“' 45 ■ genet (AlcxJSS) V [p‘] (AlexJ58) B chem, genet (AlexJ58) parent 20 m Ag^^^, parent fission (AlexJ58) 20 s Ag^^^ (AlexJ58) 15 m (AmcObO) V [EC, (EnnT39, c excit (EnnT3 9) Pd^°^(p,n) (AmeO60, 16 m (EnnT39) AmeObO) excit, sep isotopes (AmeObO) EnnT3 9) A -83 (MTW) A Ag 66 m (PatA62b, ... p'^. EC (HaldB54) A chem (BendW53) p^ 1. 6 max Rh^°^(Q, 4n) (GirR59e) HaldB54, BendW53) 69 m ( Preil60a) 59 m (JohnFA55) A EC(K) =70% (KuzM57) -84.9 (MTW) chem, genet (HaldB54) chem, excit (GirR59e) excit, sep isotopes (AmeObO, y Pd X-rays, 0.12 (T 2b, doublet), 0.15 (f 23), 0.24 (T 10 ), 0.27 Pd^^"^(p, 2n) (AmeObO) Pd^®^(d,n) (BendW53) PatA62b) 103 parent Pd (HaldB54) daughter Cd^*^^ (PreilbOa) (T 34), 0.511 (T 100, V*), 1.01 (T 10, complex), 1,16 (t 9), 1.28 (t 13) Pd^°^(p, Y) (PatA62b) daughter radiations from Pd^*^^ A i03m Ag 5.7 8 (WhiW62) ... IT (WhiW62) C excit (WhiW62) V Ag X-rays, 0,138 1 04 Pd ^^(p, 2n) (WhiW62) A -84.7 (LHP, MTW) e [0.113, 0.135] A 104 Ag 65 m (NutH60) V EC (EindnMSOa) A excit (EnnT3 9) p"^ 0. 99 max Rh^°^(a, 3n) (GirR59c. 70 m (GirR59e) 69 m (AmeObO) A -85.14 (MTW) chem, excit (GirR59e) sep isotopes, excit (AmeObO) e 0.532, 0.743 NutH60, EwbW59) others (EnnT39) Y Pd x-rays, 0.511 (V*), 0.556 (84%), 0.764 (48%), 0.854 (30%), 1.34 ( 8 %), 1.53 (7%), 1.62 ( 8 %), 1.81 (7%) . 104m Ag 29.8 m (NutH50) V p'*', EC (JohnFA55, A chem (JohnFA55) p"^ 2. 70 max Rh*°^(a, 3n) (GirR59e, 27 m (GirR59e, GirR59e) excit (GirR59) 0.532 Pd X-rays, 0.511 (120%, V^^), 0.556 ( 100%) daughter radiations from Ag NutH60, EwbW59) AmeObO, JohnFA55) A IT 20-40% (AmeO60) -85.12 (LHP, MTW) excit, sep isotopes (AmeObi) 104 daughter Cd (JohnFA55, PreilbOa) V daughter Cd (JohnFA55, PrcU60a) A 105 Ag 40 d (GumJSO) V EC, no p'*' (GumJSO) A excit (EnnT3 9) V Pd x-rays, 0.064 ( 10%), 0.280 Rh^°^(a, 2n) (BradH47a, others (EnnT3 9) A -87 (MTW) chem, excit (BradH47a) (32%), 0.344 (42%, complex), GumJ50, MeiJSOb) 0.443 (10%), 0.62-0.68 ( 12%, protons, deuterons on complex), 1.088 ( 2 %) Pd (EnnT39, GumJSO, e 0.040, 0.060, 0.256, 0.320 MeiJ50b, SutT61a, BoeR58, EwbW63) A 106 Ag 23.95 m (EbrT65) ... P''’ (KraJD37) A chem, excit (BotW37, 1. 96 max Rh*°^(Q,n) (PoolM38, 24.3 m (MocD48) 24.0 m (BendWSl, p’*', EC, p” (? ) ~1% (BendW53) HeyF37) cherp, excit, cross bomb Y Pd x-rays, 0.511 (140%, 0.512 BradH47a) BendW53) (KraJD37, PoolM38) Y + y"^) others (PoolM38, A -86.94 (MTW) ForS52, DubL38, EnnT3 9) . 106m Ag 8.5 d (SmiW 6 lb) ... EC (HurL44) A chem, excit, cross bomb Y Pd X-rays, 0.221 (9%), 0.451 Rh*°^(a,n) (P 00 IMI 8. 8.2 d (POOLM38) no p^, lim 0. 1 % (BendW53) (KraJD37, PoolM38) (9%). 0.512 ( 86 %), 0.616 (23%), BradH47a, MeiJSOb. 8.4 d (RobiR60) 0.717 (31%, complex), 0.748 (13%), 0.80 (41%. complex). SmiW 6 lb) A - 86.6 (LHP, MTW) 1.046 (29%), 1.128 (9%>). 1.199 (9%), 1.528 ( 15%), 1.58 ( 8 %). 1.83 (3%) e 0.197, 0.382, 0.405, 0.426, 0.487, 0.508, 0.592, 0.693 % 51.35 (WhiJ48) A -88.403 (MTW) cr 35 (to Ag ) (GoldmDT64) AglOVm 44.3 s (BradH4Va, ... IT (AlvL40a) A chem, genet (AlvL40a, Y Ag X-rays. 0.094 (5%) J 1.. ^107 daughtv r > d BradH45b) others (WoliEJSl, AlvL40a) A -88.310 (LHP, MTW) HelmhA41b) daughter Cd^^^ (AlvL40a, HelmhA41b, BradH45a, e 0.068, 0.090 : AlvL4''. :{*• V BradH4. U. A4/.. BradH4 ) HelmhA4b, BradH47a) Ag^°« 2.42 m (WahM60) ... p' 97.5%, EC 2.2%, A chem, n-capt (AmaE35) p" 1. 64 ma .- ..M.r ■ 2.41 m (EbrTb5) others (SehM57, AmaE35, PerlmM48, P'^ 0.28% (FrevL65, FrevLb2) excit, cross bomb (PoolM38) daughter Ag^^®*^ (WahMbO) Y 0. 90 max Pd X-rays, 0.434 (0.45r.j. 0. 11 '.M Ag*' "(. (. MocD48, BotW39, P 95.7%, EC 3.9%, FlaA44) p’*' 0.36% (WahM60) (0.56%, Y ), 0.615 (0.16 i. 0.632 ( 1.7%) Li A -87.61 (MTW) 282 Isotope Z A Half-life Type of decay (*•• ); % abundance; Mass excess (A=M-A), MeV (C’^-'^O); Thermal neutron cross section (O'), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means ' of production . 108m 47^g >5 y (WahM60) A EC 90%, IT 10% CWahMOO) -87.50 (LHP, MTW) A chem, n-capt, genet (WahM60) parent Ag^^^ (WahM60) y e Pd X-rays, Ag X-rays, 0.080 (5%), 0.434 (89%), 0.614 (90%), 0.722 (90%) 0.027 daughter radiations from Ag^*^® Ag^°^(n,y) (WahM60) Aali’ % A cr c 48.65 CWhiJ48) -88.717 (MTW) 89 (to Ag“°) ^, llOm, 3 (to Ag ) (GoldmDT64) 39.2 s (BradH46, BradH47a) 40 s (WoliEJSl, WieM45, SchinUS?) A IT (HelmhA41b) -88,630 (LHP, MTW) A chem, genet (HelmhA41b) daughter Pd^^^ (SegE41, SiegK49a, SeiJ51) daughter Cd^°'^ (HelmhA41b), BradH46, HelmhA46, BradH45a) y e Ag X-rays, 0.088 ( 5%) 0.062, 0.084 109 daughter Cd (HelmhA41b, BradH46, HelmhA46) 109 daughter Pd (SegE41, SiegK49a, SeiJSl) A 110 Ag 24.4 s {MalmS62) 24.5 s (Hirz046) others (SehM57, BolF54, ThieP62, AmaE35, PoolM38, FlaA44, GaeE36, SerL47b, Hirz047a) A (P001M38) EC 0.3% (FrevL65) no p^, lim 10 ^% (BereD62b) p"! ~b X 10“^% (BadN62) -87.47 (MTIV) A n-capt (AmaE3 5) sep isotopes, n-capt (FlaA44b) chem, genet (MiskJSO) daughter Ag^^^^ (MiskJ50) |3’ y 2.87 max 0.658 (4.5%) j Ui. A 110m daughter Ag (MiskJSO) 109 Ag ’(n,Y) (AmaE35, GaeE36. FlaA44, SerL47b, FrevL63) A 110m Ag 255 d (EasH60) 253 d (GeiKW57, ThirH57) 249 d (NilR62) others (CaliJ59, Schinj64, GumJSO, Coloj64, CorkJ50h, LivJ38c, CorkJ48b) A (T C p“ 98.7%, IT 1.3% (calc fromSutT63, NewW 64, Geij65 by LHP) -87.35 (LHP, MTW) 80 (GoldmDT64) A chem, n-capt (RedH38) resonance neutron activation (GoldhM46) chem, mass spect (BergI49) parent Ag^^^ (MiskJSO) p‘ e Y 1.5max (0.6%), 0.53 max (31%), 0.087 max 0.090, 0.113 0.658 (96%), 0.68 (16%, doublet), 0.706 ( 19%), 0.764 (23%), 0.818 (8%), 0.885 (71%), 0.937 (32%), 1.384 (21%), 1.505 (11%) daughter radiations from Ag 109 Ag (n, Y) (RedH38, LivJ38c, AIexK38, MitA38, SerL47b) A 111 Ag 7.5 d (JohaS50, KraJD37, PoolM38, StorASO) 7.6 d (SteinE51b) 7.3 d (DzaB57) others (KunD47, Hirz047a, DufR49, LindnM50a, GoeR4 9, DConP48, NisY40b, TurA51a, FinB51c) A [3‘ (KraJD37) -88.20 (MTW) A chem, excit (KraJD37) chem, excit, cross bomb (P001M38) daughter Pd^^^ (KraJD37, SegE41, JohaSSO) daughter Pd^^^”^ (MGinC52, DzaB57) P" Y 1.05 max average p energy: 0.38 ion ch (BrabJ53) 0.247 (1%), 0.342 (6%) Pd“°(n,V)Pd^^^ + Pd'^^™(p") (KraJD37) Pd^^°(d,n) (KraJD37, PoolM38, 2imK49) . 11 Im Ag 74 s (SchinU57) A IT, no p, lim 1% (SchinUS 7) -88.13 (LHP, MTW) B chem, genet (SchinU57) daughter Pd^^^ (SchinU57) Y e [Ag X-rays], 0.065 [0.040, 0.062] daughter Pd^^^ (SchinU57) A 112 Ag 3. 14 h (InoH62) 3.2 h (PoolM38, Hirz047a) A p" (PoolM38a) -86.57 (MTW) A chem, excit, cross bomb (PoolM38) daughter Pd^^^ (NisY40b, NisY40, SegE41, SeiJSl) P" Y 3. 94 max 0.617 (41%), 1.40 ( 5%). 1.63 (3%), 2.11 (3%). 2.55 (2%), many others between 0.3 and 3.3 daughter Pd^^^ (NisY40b, NisY40, SegE41, SeiJSl) In^^^(n, a) (PoolM38) Cd^^*^{d, a) (InoH62) A 113 Ag 5.3 h (AlexJ58, TurA47, Du£R4 9, VasiI58) A p" (TurA47) -87.04 (MTW) A chem (TurA47) chem, sep isotopes, excit (DufR4 9) daughter Pd^^^ (HicH54, AlexJ58) P" Y 2. 0 max 0.12 (T 10), 0.30 (t 100), 0.58 (t 5), 0.67 (T 17), 0.88 (t 4), 0.98 (t 5), 1.18 (t 4) fission (TurA47, FolRSl) Cd^^^(V,p) (DufR49) A 113 Ag 1.2 m (AlexJ58) - p" (AlexJ58) B chem, genet (AlexJ58) daughter Pd^^^ (AlexJ58) P" Y <2.0 max 0.14, 0.30. 0.39. 0.56, 0.70 fission (AlexJ58) A 114 Ag 4.5 s (PouA60) 5s (AlexJ58) A p" {AlexJ58) -85.4 (MTW) C chem, genet (AlexJ58) daughter Pd^^^ (AlexJ58) P" Y 4. 6 maix 0.57 1 14 fission, daughter Pd (AlexJ58) Cd^^'^(n,p) (PouA60) A 114 Ag 2 m (DufR4 9) 3 m (SeeW47) p" (DufR4 9) E chem (TurA47, SeeW47) chem, excit, sep isotopes (DufR4 9) not daughter Pd^^"^ (AlexJ58) p" hard p Cd^^‘^(n,p) (DuIR49) fission (TurA47, SeeW47) not observed in Cd^^‘^(n, p) (AlexJ58) 283 l\4»U)pC / A Huir-Ufc ]“ 1 Type of decay ); % abundance; Mass excess (A=M-A), MeV (C'==0); Thermal neutron Class; Identification; Genetic relationships T“ i ! 1 Major radiations: approximate energies (MeV) and intensities Principal means of production cross section (t7), barns . 115 47^« 20.0 m (BahE64) 21. 1 m (AIexJ58) others (DufR49, SeeW47. WahA52) A p" (TurA47) -84.8 (MTW) A chem (TurA47, SeeW47) chem, excit, sep isotopes (D\ifR49) parent Cd^^^ (91%), parent CdllSm (WahA52) parent Cd^^^ (92%), parent Cdll5m (HicH55) daughter Pd^^^ (AlexJ58) 1 3. 2 max 0.14 (12%, complex), 0.22 (49%, complex), 0.28 (13%), 0.36 (11%), 0.42 (7%), 0.47 (10%), 0.64(4%, complex), 1.48(11%), 1.66(8%), 1.89(10%, complex), 2.12 (13%) fission (TurA47, SeeW47, BahE64, AlexJ58) Cd^^^(Y,p) (DufR49) » >'5 Ag =20 » (AlexJBS) [p“] (AlexJ58) B chem, genet (AlexJ58) daughter Pd, parent Cd (AlexJ58) fission (AlexJ58) A Ag 2. 5 m ( AlexJ58) V p” ( Alex J 58) D chem (AlexJ58) p' 5.0 max fission (AlexJ58) A -83 (MTW) V 0.52, 0.70 A Ag 1. 1 m ( AlexJ58) V [p"] (AlexJ58) B chem, genet (AlexJ58) parent Cd^^"^ and/or Cd^^^^ ( AlexJ58) fission (AlexJ58) 48^'* 10 m (PreU60a) p'*'. [EC] (PreU60a) A chem, genet (PreilfiOa) parent Ag^^^ (PreilfiOa) V Ag X-rays, 0.22, 0.511 (Y*), 0.63, 0.85 daughter radiations from Ag^^^ on Mo (PreiI60a) Cd“>4 57 m (Preil60a) 54 m (KurcB55) 59 m ( JohnFA55) A EC, no p'*^ (JohnFA55) -84 (MTW) A chem, genet, excit ( JohnFA55) parent (JohnFA55, PreU60a) Y e Ag X-rays, 0.084 0.041, 0.058, 0.080 daughter radiations from Ag^^"^^ A 104 Ag Ag^°^(p.4n) (JohnFA55) on Mo (Preil60a) Cd*°5 55m (JohnFA53) 57 m (GumJSO) A EC, p'*' (GtimJSO) -84 (MTW) B cross bomb (GumJSO) chem, excit (JohnFA53) P" e 1. 69 max 0.282, 0.295, 0.321, 0.408, others Pd^°^(Q,n) (GumJSO) Ag^^^(p, 3n) (JohnFA53) Y [Ag X-rays, 0.308, 0.320, 0.347, 0.433, 0.511 (Y*), others to 2.3] daughter radiations from Ag Cd^°^ % A 1.22 (LelW48) -87.128 (MTW) (T C 1 (GoldmDT64) cd^o^ 6.49 h (LarN62) 6.7 h (DelL39, HelmhA41b) 6.4 h (VaUeG39) A EC 99+%, p”^ 0.28% (LarN62) -86.99 (MTW) A chem (DelL39) chem, n-capt, sep isotopes (HelmhA46) parent (AlvL40a, HelmhA41b, BradH45a, HelmhA46, BradH47a) p" Y 0. 302 max Ag x-rays, 0.511 (0.56%, Y^^), 0.796 (0.08%), 0.829 (0.21%) daughter radiations from Ag^^"^*^ Cd*°^(n,Y) (HelmhA46) Ag'°’(d. 2n) (AlvL40«, KriR39, KriR40a, HelmhA41b) Ag^°^(P, n) (DelL. ?. ValleG39) Cd^8 % 0.88 (LelW48) A -89.248 (MTW) O' c 3 (GoldmDT64) Cdl°’ 453 d (LeuH65) 470 d (GumJ50) others (MangS62, BradH46) A EC (HelmhA41b) no p"'' (DreBSl) -88.55 (MolR65, MTW) A chem (KriR40a) chem, n-capt, sep isotopes (HelmhA46) parent Ag^^^^ (HelmhA41b, BradH45a, HelmhA46, BradH46) Y e Ag X-rays, 0.088 (with Ag^^*^), 0.062 (withAg^®^), 0.084 / - 4 .U A 109m. (with Ag ) Cd*°®(n, Y) (HelmhA46. CorkJSOg) Ag*°’(d, 2n) (Kr>R4i .. HelmhA4 lb, Gi 9 Cdii° % A O' c 12.39 (LelW48) -90.342 (MTW) 0.1 (to Cd^^^"’) (GoldmDT64) Cd“l % 12.75 {LelW48) A -89.246 (MTW) I cdi“- 48.6 m (MGinCSl) 48.7 m (WieM45) A IT (FelJ41, WieM45) -88.850 (LHP, MTW) A chem (DodM38) chem, sep isotopes, n-capt (GoldhM48a) daughter In^ ^ ^ (0.01%) (MGinC51a) Y c Cd X-ray«, 0. 150 ( 30' ». 0.24 7 (94%) 0.123, 0.146 1 d * ■ 7 ' ,. ' '+.V I 1 »rw1M "*'■■■ 1.1 (M« 1 -» 284 Isotope Z A Half-life Type of decay (••• ); % abundance; Mass excess (A=M-A).MeV (C'==0); Thermal neutron cross section (i7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 48^'* A u c 24.07 (LelW48) -90.575 (MTW) 0.03 (to Cd' (GoldmDT64) >1.3 X 10^^ y sp act (WatD62a) % A (T C 12.26 (LelW48) -89.041 (MTW) 20, 000 (GoldmDT64) 13.6 y (FlyK65a) 14 y (WahA59) 5 y (CarsWSO) A p' {CarsW50) IT weak (DMatE56) -88.77 (LHP, MTW) A chem, excit, sep isotopes (CarsW50) 0. 58 max [Cd x-rays), 0.265 (=0.1%) Cd^^^(n, Y)+Cd^^^(n, n' ) (CarsW50) fission (WahA52, WahA59) % A 10^^ y sp act (WintR55) % A 7.58 (LelW48) -88.712 (MTW) 117 1.4 (to Cd ) (GoldmDT64) 0.7 (to Cd^^^"’) (TanC66a, GoldmDT64) Cd“^ 2.4 h (TanC66) »3 h (SharmR64, MancR65) others (CoryC53, AteA52, LawJL40, MetR51b) A p (SharmR64) -86.41 (MTW) A chem, genet, n-capt (SharmR64, TanC66) parent ( 93%), parent In^^^ (*?%) (TanC66) not daughter Cd^^^^ (SharmR64) others (CorkJ39, GoldhM38, LawJL40, MetR51b, MGinC55) P" e Y 2. 23 max 0.286 (with In X-rays ( with In ^ ^, 0.089 (7%), 0.273 (31%). 0.314 (16%. with In^^^"’), 0.345 (18%), 0.434 (13%), 0.832 (4%), 0.880 3%), 0.95 (4%, doublet), 1.052 (5%), 1.303 (19%), 1.577 (17%) daughter radiations from In, T In Cd"^(n, V) (TanC66a) Cd"^(d, p) (TanC66a) Cd“^- 3.4 h (TanC66) =3 h (SharmR64, MancR65) others (CoryC53, AteA52, LawJL40, MetR51b) A p (SharmR64) -86.27 (LHP, MTW) A chem, genet, n-capt (SharmR64, TcinC66) parent In^^^ (56%), parent (44%) (TanC66) 117 not parent Cd (SharmR64) others (CorkJ39, GoldhM38, LawJL40, MetRSlb, MGinC55) P" e Y [l.91 max (weak)], 0.67 max 0.286 (with In^^^"') In X-rays (with In' ^^"^). 0.273 (18%), 0.314 (8%. within"^"’), 0.345 (4%). 0.434 (4%), 0.565 (6%). 0.715 (4%). 0.880 (10%), 1.065 (9%). 1.117 (4%), 1.24 (11%, complex), 1.338 (8%), 1.408 (8%), 1.433 (10%), 1.562 (6%). 1.998 (15%), 2.319 (3%) Cd"^(n,V) (TanC66a) Cd"^(d, p) (TanC66a) Cd“^ =50 m (CoryC53) G chem, genet (CoryC53) activity not observed (SharmR64, TanC66) 285 iMltopC Z A llalflifc Type of decay (*•* ); 96 abundance; Mass excess (A=M-A), McV (C'^=0); Thermal neutron cross section (t7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 49 m (CleC61) * A (3" (CoryC53) -87 (MTW) B chem, excit (CoryC53) chem, genet (GleC6l) parent 5.0 s (CoryC53, GleC6l) not parent 4.4 m In^^^ (CoryC53, GleC6l) daughter radiations from 5.0 s , 118 In fission (CoryC53, GleC6l) Cd“’ 2.7 m (GleC&la) A (GleC61a) -84.1 (MTW) B chem, genet (GleC6la) , T 119, T 119m parent In, parent In (GleC6la) p" 3. 5 max daughter radiations from In^^^^, In“^ fission (GleC6la) Cd“’ 10 m (NusN57, GleC6la) A p' (NusN57, GleCOla) -84.1 (MTW) B chem, genet (NusN57, GleC6la) parent In^^^^ (NusN57, GleC6la) p" 3. 5 max daughter radiations from In^^^, T 119 In Sn*^^(d,ap) (NusN57) fission (GleC6la) Cd'^‘ 12.8 s (WeisH65) V [p-] (WeisH65) B chem, genet (WeisH65) ancestor Sn^^^ (WeisH65) fission (WeisH65) 3.5 m (NusN57) [p“] (NusN57) G chem, excit (NusN57) ^ T (121? ) parent 11.5 m In and / 121? \ 32 m In' ‘ ’ (NusN57) Daughter In isotopes are probably incorrectly assigned (NDS, YutH60) deuterons on Sn (NusN57) , 106 49^ 5.3 m (CatR62) others (CatR65) A p''' (CatR62), [EC] -80.6 (MTW) A chem, excit, sep isotopes (CatR62) Y 4. 9 max [Cd x-rays], 0.511 (Y^^). 0.63, 1.65, 1.85, many others Cd^°^(p, n) (CatR62) T lO'^ In 33 m (MallE49) 31m (BasuB63) 30 m (MaclK52) A p'*’. EC (BasuB63) -83.5 (MTW) A chem, sep isotopes (MallE49) mass spect (MaclK52) p" V 2. 2 max Cd X-rays, 0.22 (46%), 0.32, 0.511 (y"^), 0.73. 0.84, 0.94, 1.05, 1.25 daughter radiations from A 107ni Ag Cd^“^(d,n) (MallE49, CassW 55a) Cd^°^(p,Y) (MallE49, BasuB63) . 108 In 57 m (KatoT63) 55 m (MeaS55, MallE49) others (KatoT62b, MGinC5i) A EC, p'*' (KatoT62b) -84.14 (KatoT62b, MTW) A chem, sep isotopes (MallE49) mass spect (MaclK52) p'^ e Y 1.29 max 0.123, 0.147, 0.216, 0.238, 0.260, 0.606, 0.845 Cd X-rays, 0.150, 0.175, 0.243, 0.511 (V^^), 0.633, 0.872 Ag^°^(a, 3n) (KatoT62a, KatoT62b) - 108 In 39 m (KatoT63) 40 m (MeaS55. KatoT62b) A EC. p’*' (KatoT62b) -84.10 (KatoT62b, MTW) B chem, excit (MeaS55) genet energy levels (KatoT62b) daughter Sn^^^ (MeaS55) p'^ e Y 3. 50 max 0.606 Cd x-rays, 0.383, 0.511 (Y*), 0.633, 0.842 Ag*°^(a, 3n) (KatoT62i. KatoT62b) 4.3 h (MallE49, NozM62) 4.2 h (MGinC51) 5.2 h (GhoS48) others (TenD47a) A EC 94%, p"*^ 6% (PetrM56a) -86.53 (MTW, MolR65) A chem, excit (TenD47a) chem, mass spect (GhoS48) chem, excit, sep isotopes (MallE49) 109 descendant Sn (PetrM 56a) p”^ e Y 0. 79 max 0.033, 0.056, 0.178, 0.201 Cd X-rays, 0.205, 0.28 (complex), 0.35 (complex), 0.65 (complex), 0.91 (complex) Ag^^^(a, 2n) (Nor.M62, KatoT62a, TcnD47a) Ini'”-! 1.3 m (AlexKF65) <2m (PetrM56a) A IT (PetrM56a) -85.87 (LHP, MTW) C genet (PetrM 56a) 109 daughter Sn ~ (PetrM 56a) Y e 0.658 0.630 j u. c 10' daughti r Sn (PetrM - I^109m2 0.20 s (AlexKF65) 0. 21 s { DemiA65) 0.22 s (PoeG63) A IT (AIexKF65, DemiA65) -84.42 (LHP, MTW) C excit, cross bomb (AlexKF65, DemiA65, PoeG63) Y 0.17 (12%), 0.21 (12%), 0.40 (20%), 0.68 (100%), 1.04 ( 20%), 1.43 (77%) Ag*°^(o, ;,-l. K,V6\ D-. mlAOS R h 1 - > (AU'= Kl- ■ In“° 66 m (KatoT62a, BarnS3 9a) 69 m (Hamij63) 65 m (GhoS48) A p'*' 71%. EC 29% (NaiT64) -86.41 (MTW) A chem (BarnS3 9a) chem, excit, mass spect (GhoS48) daughter Sn^ (MeaS55) P^ c Y 2. 25 max 0.631 Cd x-rays, 0.511 ( 142S, V*), 0.658 (95%) d-i'.. '-It. ^ ^ ■ .■ r 1 A.;'-',,.. A,.*' (, i <■ 1 286 Isotope Z A Half-life Type of decay ( ^ ); % abundance; Mass excess (A=M-A),MeV (C’^=0); Thermal neutron cross section (CT), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production T 110 49^ 4.9 h {BleE51, KatoT62a) 5.0 h (MGinC51) others (GhoS48) V EC. ? (weak) (KatoT62a) no IT, lim 0.008% (Hamij63) A chem (GhoS48) chem, genet energy levels (MGinCSla, BleESl) not daughter (MeaS55) 7 e Cd X-rays, 0.66 (t 160, complex), 0.91 (T HO, complex) 0.094. 0.558, 0.615, 0.631, 0.653, 0.680, 0.858, 0.910 10 9 Ag ^(a, 3n) (FukS65, KatoT62a) 2.81 d (MaiA57) 2.84 d (MGinC51) others (BarnS39a, CorkJ39) A EC (LawJL40) no lim 0.06% (MGinCSl) -88.2 (MTW) A chem (CorkJ3 9) chem, excit (TenD47, GhoS48) mass spect (GhoS48) parent Cd^^^^ (0.01%) (MGinC51a) Y e Cd X-rays, 0.173 (89%). 0.247 ( 94%) 0.146, 0.220, 0.243 109 Ag (a, 2n) (FukS65, LawJL40, TenD47, GhoS48, MGinCSl) 14.4 m (FukS65) 12 m (Ruaj62a) 11m (GirR59i) 15 m (BleE53) A 44%, p’’' 22%, EC 34% (calc) (Ruaj62a) others (BleE53) -87.98 (MTW) A chem, cross bomb, excit (SmiRN42) chem, excit (TenD47) daughter In (SmiRN42, TenD47, GoldsGSO) p' V 0. 66 max 1. 56 max Cd x-rays, 0.511 (44%, v"^), 0.617 (6%) 10 9 Ag (o-. n) (FukS65, SmiRN42, TenD47, Rua J 6 2a, Kato T 6 2a ) Ir^llZm 20.7 m (BleE53) others (RuaJ62a, GirR59i, BarnS39a, TenD47) A IT (SmiRN42, TenD47) -87.83 (LHP, MTW) A chem (BarnS39a) chem, cross bomb, excit (SmiRN42) chem, excit (TenD47) parent (SmiRN42, TenD47, GoldsGSO) Y e In X-rays, 0.156 (9%) 0.128, 0.152 daughter radiations from In^^^ 109 Ag (a, n) (SmiRN42, TenD47, Ruaj62a, KatoT62a) % A cr c 4.23 (WhiJ48) 4.33 (WhiF56) -89.34 (MTW) 4 (to In ) o /. T 114m, 8 (to In ) (GoldmDT64) T 1 13m In 99.8 m (GleG64) 104 m (LawJL40) 103 m (GirR58) others (BarnS3 9a, CatR6S) A IT (BarnS39a) -88.95 (LHP. MTW) A chem, excit, genet (BarnS39a) daughter Sn^ (BarnS39a) Y e In X-rays. 0.3 93 (64%) 0.365, 0.389 daughter Sn^^^ (GirR58, BarnS3 9a) ^ 114 In 72 s (LawJL37, BarnS39a) A p“ 98%, EC 1.9%, p'*' 0.004% (GrodL56) p4 0.0039% (DzhB57c) -88.58 (MTW) A excit (ChanW37, BotW37, LawJL3 7) n-capt, sep isotopes (GoldhM48a) daughter In (GoldsG50) p" p^ y 1. 988 max 0.42 max Cd X-rays, 1.299 (0.17%) j u a. T 1 1 4m daughter In (GoldsGSO) In^^^(n, \) (GoldhM48a) - 114m In 50.0 d CWriH57) 50.1 d (CaliJ59) others (BendW58, BoeF4 9a, HoffK57, BarnS39a, MaiF49, LawJL40) A IT 96.5%, EC 3.5% (GrodL56) -88.39 (LHP, MTW) A chem, n-capt, excit (LawJL37, MitA38) parent In^^'* (GoldsGSO) Y e In x-rays, 0.192(17%), 0.558 (3.5%), 0.724 (3.5%) 0.164, 0.188 1 14 daughter radiations from In In^^^(n, Y) (LawJL37. MitA38, MaiF49) T 115 In 14 6 X 10 y sp act (MarteE50) 5. 1 X 10^*^ y sp act (WatD62a) 14 7 X 10 y sp act (BearG6la) others (CohS51) % A (T C p (MarteE50, CohS51) 95.77 (WhiJ48) 95.67 (WhiF56) -89.54 (MTW) 45 (to In^^^) 154 (to In^^"’!) 4 (toIn^^’^Z) (GoldmDT64) A chem, sep isotopes (MarteESO) P" Y 0.48 max no Y T 115m In 4.50 h (DunwJ47) 4.53 h (LawJL40) 4.48 h (SalS65) A IT 95%, p” 5% ( LangeL52a) -89.21 (LHP, MTW) A chem, excit (GoldhM38) daughter Cd^^^ (GoldhM38, CorkJ39, NisY40, MetRSla, WahA52, LangeL52a) p" e Y 0. 83 max 0.308, 0.331 In X-rays, 0.335 (50%) 114 115- Cd^^^(n, Y)Cd^^''(P ) (GoldhM38, SehM62) In^^^(n.n') (GoldhM38, CohS48) In^^^(p, p') (BarnS3 9a, BarnS39) In“®(a,a') (LarK39) ^ 116 In 13.4 s (DomF60) 14.0 s (DucA60) 14.5 s (CapP57) 15.6 s (Brzj65) 13 s (AmaE35, CorkJ39, WilhZ53, LawJL37) A p" (LawJL37) -88.20 (MTW) A n-capt (AmaE35) excit, n-capt (LawJL37) P" Y 3.3 max 0.434 (0.12%), 0.95 (0.1%), 1.293 ( 1.2%) In^^^(n,Y) (AmaE35, LawJL37, SerL47b) 287 Isotope / A Hair-life i Type of decay ( ); % abundance; Mass excess ; (A=M-A), MeV (C‘=0); 1 Thermal neutron i cross section (C)y barns j Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production , 1 1 6m 1 64.0 m (LocE53, CravA47) 53.9 m (SilLBl, E>omF60) 55.1 m (CapP57) 57 m (BrzJ65) A p (LawJL37) no IT, lim 0.5% (Colaj60) -88.14 (LHP, MTW) A chem, n-capt (AmaE3 5) chem, excit, n-capt (LawJL37) P V 1. 00 max 0.138 (3%), 0.417(36%), 0.819 (17%), 1.09 (53%). 1.293 (80%), 1.508 (11%). 2.111 (20%) In^^^(n, Y) (AmaE35. MitA38a, SerL47b, HumV51, BolH64) , 1 1 6m j In * 2, 16 » (AlexKF63) 2.2 s (HecP61) 2. 5 B (AlexKF60, FctP62a) 2.3 B (WhiW62) A IT (AlexKF60, FetP62a) -87.98 (LHP, MTW) A n-capt, sep isotopes (AlexKFbO, HecP61, FetP62a) excit, sep isotopes, cross bomb (WhiW62) V e In X-rays, 0.164 0.138, 0.160 In^^®(n, Y) (AlexKF60, HecP61, FetP62a, WhiW62, AlexKF63) r 117 In 45 m (Needj63, BrzJ65) 38 m (DudN6l) 43 m (Wolfej6l) others (MGinC55, CoryC53) A p" (MGinC55) -88.93 (MTW) A chem, genet (CoryC53) daughter daughter Cd^^"^ (TanC66, CoryC53) not parent lim 1% (MGinC55) daughter In ^ (MGinCSS) P" e Y 0. 74 max 0. 132 Sn X-rays, 0.158 (87%), 0.565 (100%) 117m Cd (n, Y) Cd ’ (P ); daughter Cd^^^”^ (TanC66a) , 117m In 1.93 h (DudN6l, BrzJ65) 1.96 h (NeedJ63) 1.90 h (MGinCSS, MetRSlb) 1.95 h (LawJL40) others (Wolfej61, CoryC53) A IT 47%, p“ 53% (TanC66b) IT 28%, p" 72% (Wol£eJ61) IT 22%, p“ 78% (MGinC55) -88.61 (LHP, MTW) A chem, excit (CorkJ3 9) daughter Cd^^^, daughter Cdll7rn MGinC55) parent In^^^ (MGinCSS) P" e V 1. 78 max 0.286 In X-rays, 0.158 (14%). 0.314 (31%) 117 daughter radiations from In -,116, 117m Cd (n, Y) Cd (P") (TanC66a) , 118 In 5.7 s (BrzJ65) 5.0 s (KantJ64a) 5.1 s (GleC61) A p“ (CoryC53) -87.5 (MTW) B genet (CoryC53) chem, genet energy levels (GleC6l) excit, sep isotopes (Kantj64a) daughter Cd^^® (CoryC53, GleC6l) P" Y 4. 2 max 1.230 (15%) J u. daughter Cd (CoryC53, GleC61) Sn^^^(n, p) (KantJ64a) In“« 4.35 m (KantJ64a) 4.5 m (WUhZ53, DufR4 9a) 4. 7 m (MeyP65) 4. 9 m (Brzj65) A p" (DufR49a) -87.4 (KantJ64a, MTW) B excit, sep isotopes (DufR49a) excit, sep isotopes, genet energy levels (KantJ64a) not daughter Cd^^^ (CoryC53, GleC6l) P“ Y 2. 0 max 0.69 (41%). 1.05 (80%). 1.230 (97%), 2.04 (3%) Sn^^^(n, p) (Kantj64a) In“9 2.1 m (KuoC60) 2.0 m (GleC61a) 2.3 m (YutH60) 2.8 m (BrzJ65) A p“ (KuoC 60, YutH60, GleC61a) -87.6 (MTW) B sep isotopes, excit (KuoC60, YutH60) chem, genet (GleC6la) daughter In (GleC6la) daughter 2.7 m Cd^^^ (GleC6la) P” Y 1. 6 max 0.82 (95%) Sn^^°(Y, p) (KuoC60, YutH60) ,. 119m - daughter In, nation (GleC6la) I^119m 17.5 m (KuoC 60) 18 m (DufR49a, GleC6la) 22.6 m (BrzJ65) A P~ 95%. IT 5% (GleC61a) -87.3 (LHP, MTW) B chem, excit, sep isotopes (DufR4 9a) parent In^^^ (GleC6la) daughter 10 m Cd^^^ (NusN57, GleC6la) daughter 2.7 m Cd^^^ (GleC6la) P' Y 2. 7 max [in X-rays, Sn L X-rays], 0.024, 0.30, 0.91 (doublet) 119 daughter radiations from In Sn*^“(Y,p) (Du£R4 9b, KuoC60) fission (GlcC6la) T 120 In 3.2 s (KantJ64a) 3 s (PouA60) A p” ( Kant J 64a) -86 (KantJ64a, MTW) B sep isotopes, cross bomb (PouA60) 5. 6 max 1.171 (15%) Sn^^^(n.p) (PouA60. KanU64. i Sb^^^(n.a) (PouA* T 120 In 44 s { Kant J 64a) 48 s (MeyP65) 50 s (PouA 60) =55 s (MGinC58) A p“ (PouA60) -85.8 (Kantj64a, MTW) B excit (MGinCSS) sep isotopes, genet energy levels (PouA60) P Y 3. 1 max 0.090 (12%), 0.198 (9%). 0.71 (12%), 0.86 (34%). 0.94 (12%!. 1.02 (61%), 1.171 (100%), 1.28 (14%), 1.47 (6%). 1.87 (7%), 2.01 (6%) Sn'^°(n,p) (WGi>-^ PouA60, , 121 In 30 s (YutH60) A [p“] (YutH60) -86 (MTW) C excit, sep isotopes (YutH60) Y 0.94 1.1., 4. : (4 • , 121 In 3. 1 m (YutH60, WeisH65a) A p" (YutH60) -86 (MTW) C excit, sep isotopes (YutH60) p" 3. 7 max ' : t 1, r' ' * 1 288 Isotope Z A HalMife Type of decay (^ ); % abundance; Mass excess (A=M-A), MeV (C"-0); Thermal neutron cross section (CJ), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 11.5 m (NusN57) V (3 (NusN57) G chem, genet (NusN57) daughter 3.5 m Cd ^ ^ ^ (NusN57) V 0.85 deuterons on Sn (NusN57) Assignment probably incorrect (NDS, YutHfiO) 32 m {NusN57) V p” (NusN57) G chem, genet (NusN57) daughter 3.5 m Cd^ 131?) (NusN57) Y 0.52 deuterons on Sn (NusN57) Assignment probably incorrect (NDS, YutH60) 8 s (Kantj63a) A P (KantJ63a) -83 CMTW) B sep isotopes, genet energy levels (Kantj63a) P" Y 5 max 0.99, 1.14 Sn^^^(n, p) (Kantj63a) ^ 123 In 36 s (YutHOO) V p“ (YutH60) E excit, sep isotopes (YutH60) p" 4. 6 max 174 Sn (Y,p) (YutH60) A -83 (MTW) 10 s (YutHOO) ... [p“] (YutH60) F excit, sep isotopes (YutH60) Y 1. 1 174 Sn (Y, p) (YutH60) A -83 (MTW) May be identical to 8 s In (LHP) =3.6 s (KarrM64) A p (KarrM64) -81 (MTW) B sep isotopes, genet energy levels (KarrM64) P" Y 5 max 0.99 (T 3), 1.13 (t 10), 3.21 (t 3) \ 74 Sn (n, p) (KarrM64) c 108 50®" 9.2 m (HahR65) 9 m genet (MeaS55) V [EC] (MeaS55) A genet (MeaS55) chem, excit (HahR65) parent 39 m In^^® (MeaS55) Y In X-rays, 0.28, 0.42 daughter radiations from 39 m ^ 108 In Cd^°^(a, 2n) (HahR65) e 109 Sn 18.1 m (PetrM56a) V EC, p'*' (PetrM56a) B chem, genet (PetrM56a) ancestor In parent e 1. 6 max 0.305, 0.491, 0.86, 1.09 Cd^°^(a,n) (PetrM56a) j^l09mi (petrM56a) Y In X-rays, 0.335, 0.521, 0.89, 1.12 daughter radiations from In 1, T 109 In c 110 Sn 4.0 h (MeaS55, MGinC51) 4.5 h (MallE49) V EC (MallE49) A chem, sep isotopes (MallE49) chem, genet (MeaS55, NaiT 64) Y e In X-rays, 0.283 (95%) 0.255 daughter radiations from 67 m In^^®(p, 6n) (NaiT64) Cd^°®(a, 2n) (MeaS55. MallE49) parent 67 m not parent . no In 4.9 h (MeaS55, NaiT 64) „ 111 Sn 35.0 m (HinR49) 35 m (MGinC51, Snyj65) A EC 73%. p"^ 27% (SnyJ65) EC 71%, p"^ 29% (MGinCSl) -85.6 (MTW) A chem, sep isotopes (HinR4 9) excit, cross bomb (SnyJ65) P" Y 1.51 max In x-rays, 0.511 (54%, V*), 0.75 (1.1%), 0.97 (0.7%), 1.14 (1.8%), 1.54(0.5%), 1.59(0.6%) (0. 9%), 1.89 ( 1.0%), 2. 11 (0.3%), 2.3 2 (0.2%) Cd^^°(a. 3n) (MGinCSl) e 112 Sn % 0.95 (BaiKSO) daughter radiations from In^^^ A cr c -88.64 (MTW) 0.9 (to Sn“^) 0.4 (to (GoldmDT64) c 113 Sn 115 d (GleG64) 118 d (CorkJ51f) 119 d (AviP56) 130 d (GardG56) others (DesY53, BarnS3 9a) A EC, no p^ (BarnS39a) -88.32 (MTW) A chem, excit (BarnS3 9a, LivJ39b) parent In^^^^ (BarnS39a) Y In X-rays, 0.255 ( 1.8%) daughter radiations from In^^^^ Sn^^^(n, V) (NelC50, CorkJSlf, SerL47b, Bov/eJSl) In^^^(p,n) (BarnS39a) In^*^(d, 2n) (ColeK47, GirR58) c 1 13m Sn 20 m (SchmM6l) 27 m (Sell60) A IT 91%, EC 9%, no p'*'. lim 10“^% (SchmM61) -88.24 (LHP, MTW) A chem, genet (Sell60) crit abs (SchmM6l) daughter (SelI60) Y e Sn X-rays, In X-rays, 0.079 (0.6%) 0.050, 0.075 Sn“^(n, Y) (SchmM61) Sn^^^(d,n)Sb^^^(EC), _ 114,, 113,c-^, Sn (p, 2n)Sb (EC) (SelI60, SelI59) c 114 Sn % 0.65 (BaiK50) A -90.57 (MTW) 289 lM)lupr / A Hjlf-lifc 1 Type of decay ( *** ); % abundance; Mass excess (A=M-A),MeV (C"=0); Thermal neutron cross section ( . CO. (U ^ 0.42 max [0.007, 0.033] Sb x-rays, 0.037 Sn^^°(n,V) (NelCSO. SnyR65) fission (DroB62) % A c c 4.71 (BaiKSO) -89.943 (MTW) 0.001 (to Sn^^^) 0.2 (to (GoldmDT 64) - 123 Sn 125 d (CorkJSlf) 130 d (LeeJ49, LeadGSl) 126 d (NelC50) 136 d (GrumW46) A p” (LeadGSl) -87.80 (MTW) A chem (LeadG46, LeadGSl) chem, sep isotopes, cross bomb (LeeJ4 9) P Y 1.42 max 1.08 ? (weak) Sn*^^(n,7) (LeeJ4t. NelCSO) e 1 23m Sn 39.5 m (DufR49c) 40 m (LivJ39b, LeeJ49. NelC50. MajN63) 41.5 m (MocD48) A p" (LivJ39b) -87.78 (LHP, MTW) A chem (LivJ39b) chem, sep isotopes, excit (LeeJ49, NelCSO) p" e Y 1. 26 max [0.130] Sb X-rays, 0. 160 [84%] Sn‘^^(n. V) (SerL47V.. Dum4 4c, Le-:J4, NelCSO) Sn*^'*(n. 2n:. PoolM. LeeJ4<‘) e 124 Sn (PP) lO^'^y sp act (KalkM52, FireE52, HogB52) % A (7 C 5.98 (BaiKSO) -88.237 (MTW) 0.004 (to Sn^^®) ft 1 /a. f 12 5m. 0. 1 (to Sn ) (GoldmDT 64) - 290 Isotope Z A Half-life — Type of decay (*•• ); % abundance; Mass excess (A=M-A), MeV (C"=0); Thermal neutron cross section (<7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production <; 125 50®" 9.4 d (NelCSO) 10.0 d (LeeJ4 9) A p (LivJ3 9b) -85.93 (MTW) A chem (LivJ39b) chem, excit, sep isotopes (LeeJ49) chem, sep isotopes, n-capt, genet (NelCSO) parent (NelC50) P V 2. 34 max 0.342 (0.3%), 0.468 (0.4%), 0.811 (1.5%), 0.904 (1.4%), 1.068 (4%), 1.17 (0.14%), 1.41 (0.14%), 1.97 (0.6%), 2.23 (0.05%) daughter radiations from Sb^^® 124 Sn (n, Y) (LeeJ49, NelCSO, LivJ3 9b, SerL47b) _ 125m Sn 9.5 m (NelCSO) 9.8 m (LeeJ49) 9. 7 m (MajN63) A p” (LivJ39b) -85.91 (LHP, MTW) A chem, excit, n-capt (LivJ39b) chem, sep isotopes (DufRSOa, LeeJ49) P" \ 2. 04 max 0.325 (97%) Sn^^‘^(n, Y) (LeeJ49, NelCSO, DufRSOa, LivJ3 9b, SerL47b) c 126 Sn = 10^ y yield (DroB62) A [p“] (DroB62) -86 (MTW) B chem, genet (DroB62) parent 19 m Sb^^^, ancestor 12.5 d (DroB62) Y 0.060, 0.067, 0.092 fission (DroB62) „ 126 Sn '50 m yield (BarnJ51) - p (BarnJSl) G chem, genet (BarnJSl) reassigned to Sn (DroB62) fission (BarnJSl) 2.05 h (CannH56) 2. 10 h (UhlJ62) 2.2 h (DroB62, HageE62) others (DMarP62, MajN63) A p" (BarnJSl) -84 (MTW) A chem, genet (BarnJSl, CarmH56, DroB62, HageE62) chem, mass spect (UhlJ62) 127 parent Sb (BarnJSl, CarmHS6, DroB62, HageE62) P" Y 1.45 max ? 0.44, 0.49, 0.82, 1.10, 2.00, 2.32, 2.58, 2.68, 2.82 127 daughter radiations from Sb fission (BarnJSl, DroB62, HageE62, UhlJ62) Te^^°(n,a) (CarmH56, MajN63) 4. 1 m (KauP65) 4.6 m genet (HageE62) =2. 5 m genet (DroB62) A p" (KauP65) -83.5 (KauP65, MTW) A chem, genet (HageE62, DroB62) chem, sep isotopes (KauP65) 1?7 parent Sb (HageE62, DroB62) P” Y 2. 7 max 0.49 ( 100%) fission (HageE62, DroB62) 1 ^0 Te (n, Q) (KauP65) c 128 Sn 59 m (UhlJ62) 57 m (FranISS, HageE62) 62 m (DMarP62) 58 m (DroB62) A p” (DMarP62) -83.4 (MTW) A chem, genet (FranISS, HageE62, DroB62) chem, mass spect (UhlJ62) parent 11m Sb^^^ (FranISS, DroB62, HageE62, UhlJ62, DMarP62) ancestor 9hSb^^^ (=3%) (FranI56, DroB62) not ancestor 9 h Sb^^^, lim 5% (HageE62) P" Y 0.80 max Sb X-rays. 0.044 (7%), 0.072 (19%), 0.50 (61%), 0.57 (22%) daughter radiations from 11m Sb'^» fission (FranISS, DroB62, HageE62, DMarP62, Uhlj62) c 129 Sn 9 m genet (HageE62) 6 m { DroB 62) - [p ] (HageE62, DroB62) B chem (DroB62) chem, genet (HageE62) parent Sb^^^ (HageE62) Y 1.15, others 129 daughter radiations from Sb fission (HageE62, DroB62) c 129 Sn 1.0 h genet (HageE62) - [p‘] (HageE62) B chem, genet (HageE62) 1 ? 0 parent Sb (HageE62) 129 daughter radiations from Sb fission (HageE62) c 130 Sn 2. 6 m ( PapA56) • [p-] (PapA56) D chem, genet (PapAS6) parent 7 m Sb^^^ (PapAS6, DroB62) not parent 3S m Sb^^^, lim 10% ( DroB62) daughter radiations from 7. 1 m Sb^'O fission (PapA56, FranISS, DroB62) c 131 Sn 3.4 m (PapA56) <2 m (DroB62) V [p“] (PapA56) E chem, genet (PapAS6) activity not observed (DroB62) parent Sb^^^ (PapAS6) fission (PapA56) c 132 Sn 2.2 m genet (PapA56) V [p‘] (PapA56) B chem, genet (PapAS6) parent Sb^^^ (PapA56) fission (PapAS6) 5lSb 0. 9 m (SelI59) p”^, EC (SelI59) B chem, excit (SelI59) Y Sn X-rays, 0.511 (Y*), 1.27 Sn“^(p,n) (SelI59) 291 lu)ll>pc / A Huir-iifc Type of decay ); % abundance; Mass excess (A5M-A).MeV (C”=0); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production cross section (£7), barns 6.4 m (PatA62) 7 m (SelI58. SelI59) L A EC. (SelI58, SeU59, SelI60) -83.85 (MTW) A chem (RhoA57) chem, excit, sep isotopes cross bomb (Sell60, SelI59, SelI58) excit, sep isotopes (PatA62) parent {Sell60) Y 2.42 max Sn x-rays, 0.32, 0.511 (Y^^), 0.6-0. 9 (complex), 1.03, 1.2 (complex), 1.52 ? daughter radiations from Sn^^^^ Sn^^^(d,n) (SeU58. SelI60, RhoA57) Sn^^^(p, 2n) (SelI59) sb'*-* i. i m (SelI59) V A p'*’, EC (SelI59) -84.3 (MTW) B chem, excit, sep isotopes (SelI59) V 2. 7 max Sn X-rays, 0.9, 1.30 _ 114,, _ 115,, , Sn (p, n), Sn (p, 2n) (SeU59) Sb“^ 31 m (SelI58, SclI59) 36 m (FinR61) 32 m (SehM62) M A EC 67%, 33% (VarN63) EC 65%, p"^ 35% (SelI60) EC 88%, p'^ 12% (SehM62) -87.00 (MTW) A chem (RhoA57) chem, sep isotopes, excit, cross bomb (SelI58, SeU59, Sell6l) chem, mass spect (FinR6l) daughter Te^^^ (Sell60a, ReisR65) Y 1.51 max Sn X-rays, 0.499 (100%), 0.511 (67%. V*), 0.98 (5%), 1.24 (5%). 2.22 (1%) Sn“^(d, n) (SeU58, SelI61) Sn^^^(p, 2n) (SelI59) In'^^(a, 2n) (SehM62) Sb"<> 16 m (StahP53a) 14 m (AteA54) 15 m (KuzM58) A EC 72%, p'^ 28% (FinR61) -87.0 (MTW) A chem, excit (StahP53a) genet (FinR6l) daughter Te^^^ (FinR6l) P" Y 2.3 max Sn x-rays, 0.511 (v"^, 56%), 0.93 ( 26%), 1.293 (85%), 2.23 ( 14%) daughter Te^^^ (FinR6l) In^^^(a, 3n) (AteA54) Sb‘“'"’ 60 m (TemG49. AteA54) A EC 81%, p'^ 19% (BolH64a) -86.5 (LHP, MTW) A chem, excit, mass spect (TemG49) not daughter Te^^^ (FinR6l) p'^ e Y 1. 16 max 0.070, 0.095, 0.111 Sn X-rays, 0.099 (30%), 0.140 (30%), 0.406 (36%). 0.511 In^^^(a, 3n) (TemG49) In^^^(a.n) (JensB60) (38%, Y*). 0.545 (68%), 0.96 (75%), 1.06 (27%), 1.293 ( 100%) Sb“^ 2.8 h (FinR61. ColeK47, TemG49, KuzM 58) EC 97.4%, p"^ 2.6% (MGinC55) EC 97.7%, p'*' 2.3% (BaskK64) A chem (LivJ3 9) chem, excit, mass spect (TemG49) daughter (FinR6l) P" Y 0. 57 max Sn X-rays, 0.158 (87%), 0.511 (5%. Y*) In*^^(a, 2n) (TemG49) A -88.57 (MTW) Sb*”"' -4 1.6 X 10 s delay coinc (GhoA63) F crit abs (GhoA63) same as 0.726 level of Sn^^^? Y 0.080 (T 10), 0.17 (t 8), 0.24 (T 9), 0.46 (T 24) scint spect (GhoA63) protons on Sb (GhoA63) not produced by protons on Sn (GritV65a) Sb“8 3.5 m {LindaM48, FinR6l) 3.6 m (RisJ40) A EC. p"^ (FinR6l) -87.96 (MTW) A excit (RisJ40) chem (LarK3 9) genet (FinR6l, LindnM48) daughter Te^^® (LindnM48, LindnMSOa, FinR6l) 2. 67 max Sn x-rays, 0.511 (150%, Y*), 0.83 (0.4%), 1.230 (3%, doublet) 118 daughter Te (LindnM48a, FinR61) In*^^(a,n) (LarK39, Ris J40) SbHSmi 5.1 h (ColeK47, TemG49) V EC 99+%, p'*' 0.16% (Bo1H61) no p"*^, lim 0. 1% A chem, cross bomb (ColeK47) chem, excit, mass spect (TemG49) Y Sn X-rays. 0.041 (29%), 0.254 (93%), 1.049 (100%), 1.230 (100%) In*'^(a,n) (ColeK47, TemG49. Bo 1H61. Rama8M6la. Bod£62a) ( JensB60) not daughter Te^^® (FinR61) e 0.012, 0.036, 0.223 A -87.77 (LHP, MTW) 118m 2 0.87 s (WhiW62) V [IT] (WhiW62) E excit (WhiW62) Y 0.14 (T 4), 0.30 (T 10). 0.38 (t 10) protons on Sb (WhiW62) Sb“’ 38.0 h (01sJ57) others (ZaitN60a, ColeK47, LindnM48) A EC (ColeK47) -89.48 (MTW) A chem, cross bomb (ColeK47) chem, genet energy levels (01sJ57) daughter Te^^^^ (LindnM48, LindnMSOa, FinR6l) daughter Te^^^ (FinR6l) Y e Sn X-rays, 0.024 (16%) 0.020 Sb*^'(p, 3n)Tc**’fEC; (FinR61) „ 119,, _ 118,. Sn (p, n), Sn (d. n- (ColcK47) 15.89 m (EbrT65) 16.4 m (JohnHSO) 16.6 m (PerlmM48, StahP53a) 17 m (HeyF37, LivJ38c) A p'*', EC (BlasJSO) -88.42 (MTW) A chem, excit (BotW3 9, HeyF37, ChanW37) chem, excit, cross bomb (LivJ37) ■“+ 1. 70 max Sn x-rays, 0.511 (87%. Y*), 1.171 ( 1.3%) Sn (p, n) ( fiU Sn‘^0;d. :L - • +, Sn’*’).!,;. (Lv* 5.8 d (MGinC55a) 6. 0 d {LindnM48) EC (LindnM48) no or IT, lim 0.3% (MGinC55a) A chem, sep isotopes ( Lin.dnM48) chem, cross bomb (MGinC55a) chem, mass spect (JensB60) Y e Sn X-rays, 0.090 (81%), 0.200 (88%), 1.03 (99T.). 1.171 ( 100%) 0.061, 0.096, 0.171, 0.196 373-062 0 - 70 - 20 292 Isotope Z A Half-life Type of decay (••• ); % abundance; Mass excess (A=M-A), McV (C '= 0); Thermal neutron cross section (C7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 3jSb % 57.25 (WhiJ48) A cr c -89.593 (MTW) 6 (to Sb^^^) 0.06 (to (GoldmDT64) 2.80 d (BlasJSla) 2.75 d (CorkJ54) 2.73 d (PerlmM58) A p“ 97%, EC 3.0%, p+ 0.006% (GlauM55, PerlmM58) p" 97%, EC 3.1% (FarrB55) -88.32 {MTW) A chem (AmaE35) chem, cross bomb (LivJ39) p" Y 1. 97 max 0. 56 max Sn X-rays, 0.564 (66%), 0.686 (3.4%), 1. 140 (0.7%), 1.26 (0.7%) Sb^^^n.Y) (AmaE35, LivJ3 9, SerL47b, HumV51) 4.2 m (DMatE63, EngeR62) others (DMatE47, Vanj62) V IT (DMatE47) no p^, no p lim 0.5% (DMatE62) A chem, n-capt, sep isotopes (DMatE47) y e Sb x-rays, 0.061 (50%), 0.075 ( 17%) 0.021, 0.030, 0.045, 0.056, 0.071 Sb^^^(n, Y) (DMatESl) A -88.16 (LHP, MTW) ^1-3 X 10^^ y sp act (WatD62a) % A 10*^ y sp A -89.16 (MTW) act (HeiJ55) O’ c 400 (GoldmDT64) 117 d (AndeC65) 104 d (HillR51) 121 d (CorkJ51f) A IT (HilIR4 9a) -88.92 (LHP, MTW) A chem, n-capt, sep isotopes (HUlR49a) Y e Te X-rays. 0. 159 (84%) 0.057, 0.084, 0.127 Te*^^(n,V) (HUlR49a, KatzRSO, HammBSl, CorkJSlf) Sb*^^(d, 2n) (KatzR50) % A (T c 4.61 (BaiKSO) -90.50 (MTW) 2 (to Te*^^) 5 (to Te*^®'*’) (GoldmDT64) Te*“ % 6.99 (BaiKSO) A -89.03 (MTW) (7 c 1.5 (GoldmDT64) TeliSm 58 d (HU1R51, An de G 6 5 ) A IT (FrieG48) -88.89 (LHP, MTW) A chem, genet (FrieG48) daughter Sb^^^ (FrieG48, KerB49) e Y 0.004, 0.030, 0.078, 0.105 Te X-rays, 0.035 (7%), 0.110 (0.3%) daughter Sb*^^ (FricG48, KerB4 9) Te'^‘*(n,\) (HillR49a) not daughter lim 0.05% (FrieGSla) % A (T c 18.71 (BaiKSO) -90.05 (MTW) 127 0.9 (to Te^""') 0.1 (to Te*^^™) (GoldmDT64) 9.4 h (KniJD56, MajN63) 9.3 h (SeaG40, MangS62) 9.5 h (BonaG64) A p" (AbeP39) -88.30 (MTW) A chem (TapG38, AbeP39) chem, excit, cross bomb (SeaG40) daughter Te (SeaG40, GleLSlh, WilliRRSl) daughter Sb^^^ (84%) (AbeP39, GleLSlh, BeydJ48) P" Y 0.70 max I X-rays, 0.058 (0.010%), 0.21 (0.03%, doublet), 0.360 (0.05%), 0.417 (0.3%) Te Y), daughter Tc*^^^ (SeaG40, SerL47b) fission (AbcP39, ScaC40, WiUiRR48. GleLSlh) ^gl27m 109 d { AndeG65) 105 d (KniJD56) 115 d (CorkJSlf) 90 d (SeaG40) A IT 99.2%, p” 0.8% (AubR65) IT 98%, p" 2% (KniJD56) -88.21 (LHP, MTW) A chem, excit, genet (SeaG40) 127 parent Te (SeaG40, GleLSlh, WilliRRSl) daughter Sb*^"^ (16%) (BeydJ48) Y e P" Te X-rays, 0.059 (0.19%), 0.089 (0.08%), 0.67 (0.004%) 0.057, 0.084 [0. 73 max] daughter radiations from Tc^^^ Tc'^^(n, V) (HillR4 <.. ScaG40. Sc-rL47b) fission (CrumW-i6, GleLSlh. GrumW48) T^8 % 31.79 (BaiKSO) A (T C -88.98 (MTW) 0.14 (to Te*^^) 0.017 (to Te*^^) (GoldmDT64) 296 Isotope Z A Half-life Type of decay (*•;•); % abundance; Mass excess (A=M-A),MeV (C"=0); Thermal neutron cross section (O'), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 68. 7 m ( BrzJ 63,. BrzJ65) 67 m (WafH48, MajN63) 72 m (SeaG40, BonaG64) 70 m (AbeP39, GleLSlh, MangS62) 74 m (GravW56) A p (SeaG40) -87.02 (MTW) A chem, excit (BotW39, SeaG40) daughter Te^^^ (SeaG40, GrumW46, WilliRRSl) daughter Sb^^^ (AbeP39) P e \ 1.45 max 0.022, 0.026 I X-rays, 0.027 ( 19%), 0.275 (1.7%, doublet), 0.455 (15%), 0.81 (0.5%, complex), 1.08 (1.5%) , ,. „ 129m daughter Te (SeaG40, GrumW46, WiIliRR5I) Te^^®(n, V) (MangS62, SeaG40, SerL47b) fission (AbeP39, Hah043a, GrumW46, WilliRR48, NoveTSla) Tel29m 34. 1 d (AndeG65) 33.5 d (CorkJ51£) 33 d (MajN63) 32 d (Brzj65) others (SeaG40, NoveTSlb, GravW56, WafH48) A IT 64%, p" 36% (DevaS 64a) IT 68%, p" 3 2% (AndeG62) -86.92 (LHP, MTW) A chem, genet (SeaG40) 129 parent Te (SeaG40, GrumW46, WilliRR51} p" e Y 1. 60 max 0.074, 0.102 Te X-rays. 0.69 (6%) 129 daughter radiations from Te Te^^®(n, Y) (HillR49a, SeaG40, SerL47b) fission (Hah043a, GrumW46, WilliRR48, NoveTSlb, PapASla, GrumW48) Te'30 h/2 Xe ratios, mass spect (TakaN65) 1 X 10^^ y Xe ratios, mass spect (IngMSO) others (FremJSZ, SharmH53, FulH52) % A cr c 34.49 (BaiKSO) -87.34 (MTW) 0.2 (to Te^^^) 0.04 (to Te^^^"') Tel^l 24.8 m (GeiK52) others (MangS62, SeaG40, AbeP39) A p" (SeaG40) -85.16 (MTW) A chem, excit (SeaG40) daughter Te^^^*^ {AbeP39, SeaG40, WilliRR51) parent (AbeP39, SeaG40, PapASl, CookGSl, LivJ38e, Hah03 9c) daughter Sb^^^ (PapA51, CookG51, SaraD65) p" e Y 2. 14 max 0.116, 0.144 I X-rays, 0.150 (68%), 0.453 (16%), 0.493 ( 5%), 0.603 (4%), 0.95 (3%, complex), 1.00 (4%, doublet), 1.147 (6%) Te^^°(n, Y) (SeaG40, SerL47b, GeiK52) j v* 'T- 13 Im daughter Te (AbeP39, SeaG40, WilliRRSl) Tel31m 30 h (AbeP39. SeaG40) A p” 82%, IT 18% (BedeA61, DevaS65) p" 78%, IT 22% (HebE55) -84.98 (LHP, MTW) A chem, genet (SeaG40) parent Te^^^ (AbeP3 9, SeaG40, WilliRR51) daughter Sb^^^ (CookG51, PapASl, SaraD65) P“ e Y 2.46 max (5%), 0. 9 max 0.048, 0.069, 0.149, 0.177 Te X-rays, I X-rays, 0.081 (2%), 0.102 (5%), 0.200 (8%), 0.241 (8%), 0.336 (9%), 0.78 (60%, complex), 0.85 (31%, doublet), 1.127 (13%), 1.206 ( 11%), 1.629 (3%), 1.860 ( 1%), 1.965 (2%) daughter radiations from Te^^^ ll31 Te^^°(n,\) (SeaG40, Ser L4 7b) fission (SaraD65, AbeP3 9, Hah039c, KatcSSld, WilliRRSl, PapASla) 77.7 h {PapASla) 78 d (AndeG65) others (AbeP39, CheeG58, FleW56, Hah03 9b) A p” (AbeP39) -85.21 (MTW) A chem, genet (AbeP39) fission fragment range (KatcS48) parent (AbeP39, Hah039c, Hah03 9b, NoveTSla. WinsW51) daughter Sb^^^ (AbeP39) P" e Y 0. 22 max 0.020, 0.048, 0.197 I X-rays, 0.053 ( 17%). 0.230 (90%) daughter radiations from fission (AbeP3 9, Hah03 9a, Hah03 9b, PapASla, KatcS48) Te'“ 12.5 m ( PruS 65) V [p”l (PruS65) B chem, genet (PruS65) daughter Te^^^^, parent I*^^ (PruS65) Y 0.15, 0.31, 0.41, 0.73, 1,02, 1.33, 1.71, 1.85 r- ■ j t .. rr^ 133m fission, daughter Te (PruS65, SaraD65) 50 m (FergJ62) 63 m (PapA52) 53 m ( AlvT57) 60 m (AbeP39, WuC40) p“ 87%, IT 13% (AlvT57) A chem, genet (AbeP39) parent 12.5 m Te^^^ (PruS65) daughter Sb^^^ (PapASl) ancestor (AbeP39, Hah039c, SegE40, WuC40, WuC45, PapASl) p‘ e Y 2.4 max 0.303 Te X-rays, 0.31 (21%), 0.432 (50%), 0.47 (22%), 0.557 (35%), 0.63 (18%), 0.70 ( 24%), 0.754 (85%), 0.91 (57%), 1.01 (10%), 1.33, 1.71, 1.85 daughter radiations from daughter radiations from Te included in above listing fission (AbeP39, Hah039c, SegE40, WuC40, PapASl, KatcS48, SaraD65) Te'” 2 m {PapA52) p" (PapA52) G chem, genet (PapA52) activity not observed ( PruS65) daughte r Te ^ ^ (PapA52) Te^34 42 m (FergJ62) 44 m (PapASla) 43 m (AbeP39) p” (AbeP39) A chem, genet (AbeP39) parent (AbeP39, Hah039c, PapASla) others (KatcS48, PolA40a) Y I X-rays, 0.08(13%), 0.17(16%), 0.204 (21%), 0.262 ( 19%) 134 daughter radiations from I fission (KatcS48, Hah039c, AbeP39, PolA40a, PapASla, FergJ62) 297 Itailopc / A lUlflifc i 1 Type of decay ( ); % abundance; Mass excess (A=M-A). MeV (C'-=0); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion I cross section ((7), barns i m (GlcLSli. DodR40. KatcSSlf) i— i p“ (DodR40) E genet (DodR40) parent (GleLSli, KatcSSlf) fission (GleL51i, DodR40, KatcSSlf) T- ’ • 1 m (Hah043a) p' (Hah043a) E chem (Hah043a) fission (Hah043a) 7 m ( AjideC65) p'*’ (AndeG65), [EC] C mass spect, [chem] (AndeG65) y 0.16, 0.34, 0.522 (V*) j protons on La (AndeG65) ,1.7 14. 5 m genet (ButcF65a) [p'^] (ButeF65a) F chem, genet (ButeF65a) parent 61 m Te, parent protons on I (ButeF65a) 1.9 h Te^^^ (ButeF65a) ,118 13.9 m (AndeG65) 17 m (ZaitN60a, p''" =54%. EC =46% (AndeG65) B mass spect (AagP57) chem, genet (ZaitN60a) y Te X-rays, 0.511 (108%, V*), 0.55, 0.60, 1.15 protons on I (ZaitN 60a, ButeF65a) ButeFSSa) others (AagP57) A —81 (ButeF65a, AndeG65, MTW) parent Te^^^ (ZaitN60a) daughter Xe ^ (AndeG6S) lU9 19.5 m (AndeG65) 18 m (RosG54) Z\ m genet (2aitN60, 2aitN60a) 19 m (AagP57) Z6 m (ButeF65a) • p"^ 51%. EC 49% (AndeG65) A chem (MarqLSO) mass spect (AagP57) chem, genet (ZaitN60, ZaitN60a) 119 parent Te (ZaitN60, ZaitN 60a) y Te X-rays, 0.26, 0.511 ( 102%, Y^^), 0.78 119 daughter radiations from Te, on Pd (RosG54) ( protons on I (ZaitN60, ZaitN60a) daughter Xe^^^ (AndeG65) ,130 1.35 h (AndeG65) 1.30 h (ButeF65) 1.4 h (AagP57) A EC 54%, p"^ 46% (AndeG65) -83.8 (ButeF65, AndeG65, MTW) A mass spect, chem (AagP57, AndeG6S) chem, genet (ButeF6S) daughter Xe (ButeF6S) V 4. 0 max Te x-rays, 0.511 (92%, V*), 0.56, 0.62, 1.52 protons on I, daughter Xe^^° (ButcF65) ,120 30 m (MarqLSO, KuzM 58a) V P'*' (MarqL50) G chem (MarqLSO, KuzM 58a) activity not observed (AndeG65) ! alphas on Sb (MarqLSO) ' protons on I (KuzM 56a) ,121 2. 12 h (AndeG55) 2.0 h (AagP57, ButeP65) 1.5 h (MathH54a, DroB52) 2. 1 h (ZaitN60) 1.4 h (RosG54) 1.8 h (MarqL50, KuzM 58a) A EC 91%, p"^ 9% (AndeG65) -86.0 (MTW) A chem, genet (MarqLSO) mass spect (AagP57) parent Te^^^ (MarqLSO) daughter Xe (MathH54a, DroBSZ) p" y 1. 2 max Te X-rays, 0.212(90%). 0.27 (3%), 0.32 (6%), 0.511 (18%. Y*) Sb^^^(o,4n) (MarqL50) ,122 3.5 m (MathH54a) 3.4 m (DroB52) 3.6 m ( YouJ51) 4 m (MarqL50) A (MarqLSO), [EC] -86.15 (MTW) A chem, excit (MarqLSO) sep isotopes (YouJSl) daughter Xe^^^ (TilDESZ, DroBSZ) p" y 3. 1 max Te x-rays, 0.511 [130%, Y*j, 0.564, 0.69, 0.78 Sb^^^ (q, 3n) (MarqLSO) Te^^^(p.n) (YouJ51) ,123 13.3 h (AndeG65) 13.0 h (MitA49a) 13 h (MarqLSO, MathH54a, KuzM58a) A EC (MarqL50) no p"*^ (MitA59) -88 (MTW) A chem, excit (MarqLSO) chem, sep isotopes (MitA49a) 123 daughter Xe (DroB52, MathH54a, TilDESZ) y e Te X-rays, 0. 159 (83%) 0. 127 Sb'^‘(Q, 2n) (MarqLSO, MitA4 9a, M it A 59, GupR60b) ,124 4. 15 d (AndeG65) 4.2 d (DysN58, MitA59) 4. 1 d (GirR59g) 4.0 d (LivJ38e) 4. 5 d (MarqL50) 3.4 d (AagP57) EC 74%. p"^ 26% (DysN58) EC 75%. p"^ 25% (GirR59g) EC 71%. p"^ 29% (MitA59) A chem, excit, cross bomb (LivJ38e) P" y 2. 14 max Te x-rays, 0.511 (50%, Y*), 0.605 (67%), 0.644 (12%). 0.73 (147o), 1.37 (3%). 1.51 (4%), 1.69(14%). 2.09(2.0%), 2.26 ( 1.5%) Sb^^\o,n) (MarqL9C, LivJ38e) Sb*^''(a, in) (M.irqL no p, lim 0. 1% (MerC6l) EC(K)/EC(L) 9 (MitA59) A -87.33 (MTW) ,125 60.2 d (LeuH64, GleG64) 60.0 d (FrieG51a) 57.4 d (MatthC60) others (KuzM 58a, ReidA46a) A e of decay ( ); % abundance; Mass excess (A=M-A),MeV (C’^=0); Thermal neutron cross section (<7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 45 m (MathH54) 49 m ( Preil62) A EC 51%. 49% (FrieG62) -84 (MTW) A chem, mass spect (MathH54, MicM 54) parent Xe (=0.1%), parent (MathH54) daughter Ba^^^ (Preil62) [descendant La^^^] (Preil63) ^ ' + 2. 05 max 0.077, 0.107 Xe X-rays, 0.112, 0.511 (98%, \+) 125 daughter radiations from Xe Xel25m I^^^(a, 6n) (MathH54) In“®(N^^,4n)Ba^^^(P+) (PreiI62) 1.6 m (Kaltdv! 54) A p'*' 82%, EC 18% (KalkM54) -84.4 (MTW) A chem, mass spect (KalkM54) daughter Ba^^^ (KalkM54) +0. ^ 3.8 max Xe X-rays, 0.386 (38%). 0.511 (164%, V*) J 126 daughter Ba (KalkM54) Csl" 6.2h (MathH54, Preil63) 6. 1 h (MicM54, NijG55) 5.5 h (FinRSOa) A EC 96.5%, p"^ 3.5% (FrieG62) -86.4 (MTW, WintG65a) A chem, mass spect (FinRSOa, MicM 54) 127 parent Xe (FinR50a) parent Xe^^^^ (0.01%) (MathH54) 127 daughter Ba (LindnM52, Preil62) descendant (YafL63) Y e P" Xe X-rays, 0.125(10%), 0.406 (72%), 0.511 (7%, V+) 0.090, 0.119, 0.371 1. 08 max daughter radiations from Xe^^^ I^^^(a, 4n) (FinRSOa, MicM 54, MathH54) 3.8 m (LindnMSZ) 3. 9 m (WapA53a} 3.5 m (FinR53) 2.5 xn (MurA55) A p’^ =51%. EC =49% ( JhaS6l) p'^ 75%. EC 25% (HollaJ55) -85.92 (MTW) B chem, genet (FinR51) daughter Ba^^^ (FinRSl, LindnM52, HollaJ55) descendant La^^^ (YafL63) e Y 2. 9 max 0.407 Xe X-rays, 0.441 (27%), 0.511 110%, \+), 0.528, 0.576, 0.97 (1%), 1.12 (1%) See also 7*5 of Ba^^^ daughter Ba^^^ (FinRSl, LindnM52, HollaJ55) 32. 1 h (SheraE65) 30.7 h (NijG55) 31 h (FinR50a) A EC. no p"^ (FinR50a) -88 (MTW) A chem, mass spect (FinRSOa, MicM 54) 129 daughter Ba ( Thom C 50, FinRSO) Y e Xe X-rays, 0.040 (2%), 0.280 (3%), 0.320 (4%), 0.375 (48%), 0.416 (25%), 0.550 (5%) 0.005, 0.034, 0.057, 0.336, 0.376 I^^^(a, 2n) (FinR50a, JhaS60a, NierW58) j V,. = 129 daughter Ba (ThomCSO, FinRSO) 30 m (SmiA52a, MicM54) others (FinR50a) A P+, EC, p' (P+/P’ 27.5) (SmiA52a) -86.89 (MTW) A chem, excit (SmiA52a) chem, mass spect (MicM54) P" p Y 1. 97 max 0.442 max Xe X-rays, 0.511 (Y^) I^^^(a, n) (FinRSOa, SmiA52a, NierW58) 9.70 d (GleG64) 9.69 d (LarN60) others (LyoW63, YafL49, KatcS47a, YuF49, KondESO, JosB60) A EC, no p+ (FinB47, CanR51b, KondE50) -88.06 (MTW) A chem, genet (KatcS47a) chem, mass spect (KarrD49) daughter Ba^^^ (KatcS47a, YuF47, YafL49, CanRSlb) ... ... V 13 Im not parent Xe (CanRSlb, SaraB54) Y Xe X-rays _ 130, 131,^-.. Ba (n, Y)Ba (EC) (KatcS47a, YuF47, YafL49, CanRSlb) 6. 59 d (DeaP64) 6. 54 d (RobiR62a) 6.48 d (WhyG60) othe r s ( CamM 44 ) A EC 97%, p+ 0.6%, p" 2% (RobiR62a, TayH63) P+ 1.2% (JhaS61b) -87.19 (MTW) A chem, excit (CamM44) genet energy levels (BhaK56, RobiR62a) P" p Y 0.40 max [0. 7 max] Xe X-rays, 0.48 (4%, complex), 0.668 ( 99%), 1. 138 (0.5%), 1.320 (0.6%) Cs (p,pn) (JhaS6lb, RobiR62a, TayH63) Xe^^^(p,n) (NierW58) Cs^^^(n, 2n) (CamM44, LangeLSla) % A cr c 100 (NierA37a, WhiF56) - 88.16 (MTW) 1 34 28 (to Cs ) ^ 134m, 2.6 (to Cs ) (GoldmDT64) 2.046 y (DieL63) 2.05 y (EasH60) 1.99 y (FlyK65a) 2.07 y (WyaE61, GeiKW57) 2. 19 y (Mei-W57) 2.26 y (EdwJ58) others (BayJ58, GleLSim, KalbD40, ScheiH38, SerL47b) A (T C p” (KalbD40) no EC, lim 1% (KeiG55) no p^, lim 0.00 9% (MimWSl) -86.79 (MTW) 136 (GoldmDT64) A n-capt (AlexK38) chem, n-capt, excit (KalbD40) P" Y 0. 662 max 0.57 (23%, complex), 0.605 (98%), 0.796 (99%, complex), 1.038 ( 1.0%), 1.168 (1.9%), 1.365 (3.4%) Cs^^^(n, Y) (AIexK38, ScheiH38, KalbD40, SerL47b) 2.895 h (KeiB6l) 2.91 h (BaeA60, WarhH64) others (SlaH45, KalbD40, SerL47b) A IT (GoldhM48a, CaldRSO) p" =1% (KeiG55) -86.65 (MTW, LHP) A chem, n-capt (AmaE35, MLenJ35a) chem, excit, n-capt (KalbD40) Y e P” Cs X-rays, 0.128 (14%) 0.005, 0.009, 0.092, 0.122 0. 55 max Cs^^^(n,V) (AmaE35, MLenJ35a, KalbD40, SerL47b) 303 / A iijunrc ^ Type of decay ( ); % abundance; Mass excess (AsM-A),MeV (C"=0); Thermal neutron 1 cross section (<7), barns Class; Identification; Genetic relationships Major radiations: ■ approximate energies (MeV) and intensities Principal means of production . MS •■•i' ** i. 0 X 10^ y »p act (ZclH4 9) J. 1 X 10^ y yield (SugaN49a) 1 A lon ;■ I ■ ■ Cob: A 1. - Br.T .. C r 1 Dll* F itKt. N daughter radiations from i 306 Isotope Z A Half-life Type of decay (f** ); % abundance; Mass excess (A=M-A),MeV (C'’ = 0); Thermal neutron cross section (tJ), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 56®^ 11 m (SchumR59, FritK62a) others (Hah042a) A (3 (Hah042a) -77.9 (MTW) B chem, genet (Hah042a) 142 parent La (Hah042a) others (Hah03 9a, Hah03 9, LangeA40) P 7 1. 7 max La X-rays, 0.080 (t 30), 0.26 (t 100), 0.89 (t 40), 0.97 (t 15), 1.08 (t 10), 1.20 (t 35) fission (SchumRS9, FritK62, Hah042a) daughter radiations from La^^^ 12 s (WahA62) - (3~ (Hah042a) B chem, genet (Hah042a) chem (WahA62) fission (Hah042a, WahA62, FritK62a) parent La^"^^ (Hah042a) short (DilCSla, DilC51) V [p“] (DilCSla) F genet (DilCSla) [descendant Xe^^^, ancestor Ce^^^] (DilC51a, DUC51) 144 descendant Xe from fission (DilCSl, DilCSla) , 125 5vLa <1 m (Preil63) V F chem, genet [ancestor (Preil63) on In (Preil63) , 126 La 1.0 m (ShelR61, PreiI63) • [p'*', EC] (ShelR6l) B chem, cross bomb, genet (ShelR6l) chem (Preil63) parent Ba^^^ {PreU63, ShelR6l) y Ba x-rays, 0.256, 0.511 (7^^) 5n) (ShelR61, PreiI63) Sb^^\c^^, 7n) (ShelR61) T 127 La 3.5 m genet (YafL63) 3.8 m genet (Preil63) • [p'’’.EC] (PreU63, YafL63) B chem, genet (Preil63, YafL63) 127 parent Ba (Preil63) ancestor Cs^^*^ (YafL63) C^^ on Sb (YafL63) on In (Preil63) , 128 La 4.2 m (PreiI63) 4.6 m (YafL63) 6 m (ShelR61) [p'^.EC] (ShelR6l) B chem, cross bomb (ShelR6l) chem, genet (YafL63, Preil63) parent Ba^^^ (Preil63, YafL63) ancestor Cs^^^ (YafL63) Y Ba X-rays, 0.279, 0.511 (v"^) Sb^^^(C^^, 5n) (ShelR61, YafL63) Sb^^^(C^^, 7n) (ShelR61, YafL63) ln^^^(0^^, 3n) (ShelR61, PreiI63) , 129 La 10.0 m (YafL63) 7.2 m genet (Preil63) =24 m ( LavA63) A [p''',EC] (PreiI63, LavA63, YafL63) -81 (MTW) A chem, genet (Preil63, LavA63) chem, sep isotopes, cross bomb, genet (YafL63) C^^ on Sb (YafL63) on In (Preil63) parent Ba^^^ with 2.20 h (YafL63), 2. 1 to 2.4 h (LavA63) daughter Ce^^^ (LavA63) T 130 La 8.7 m (YafL63) 9 m (ShelR61) A p'*', EC (ShelR61, YafL63) -82 (MTW) A chem, cross bomb, genet energy levels (ShelR6l) chem, sep isotopes (YafL63) Y Ba X-rays, 0.356, 0.45, 0.511 (V*), 0.55, 0.72, 0.81, 0.91, 1.01, 1.19, 1.45, 1.55 Ba^^°(p, n) (YafL63) Sb^^^C^^, 3n) (ShelRbl) Sb^^^(C^^, 5n) (SheIR61) T 131 La 56 m genet (YafL63) 61 m (CreC60) 58 m (GranM51) #.% A EC 72%, p"^ 28% (CreC60) -83.9 (MTW) A chem, mass spect (GranMSl) chem, genet (YafL63) parent Ba^^^ (YafL63) not parent Ba^^^*^, lim 1% (HoreD63a) e Y 1. 94 max 0.078, others Ba X-rays, 0.115(23%), 0.169 (5%), 0.214 (8%), 0.285 ( 17%), 0.3 64 (20%), 0.417 (20%), 0.455 Ba^^°(d,n) (CreC60) Sb^^^(C^^, 4n) (YafL63, HoreD63a) (8%), 0.511 (56%, V^^), 0.597 (7%), 0.878 (4%) , 132 La 4.5 h (GranMSl) 4.8 h (WareW60) 4.2 h (GrigE60) A P’^ (GranMSl). [EC] -83.1 (LHP, MTW) A chem, mass spect (GranMSl) daughter Ce^^^ (WareW60) P" Y 3.8 max Ba x-rays, 0.47, 0.511 (v"^), 0.56, 0.66, 0.90 (doublet), 1.03, 1.22, 1.58, 1.92 protons on Ba (GranMSl) ^ 133 La 4.0 h (NauR50) V EC, p'*‘ (weak) (NauRSO) A chem, mass spect (NauRSO) Y Ba X-rays, 0.511, 0.8 Cs^^^(u,4n) (NauR50) A -85.5 (MTW) daughter (StovBSl) p"^ 1. 2 max e 0.26 , 134 La 6.8 m (GirR59a) 6. 5 m (StovB51) V p'*' 62%, EC 38% (GirR59a) p'*' =44%, EC =56% (StovB51) B chem, genet (StovBSl) daughter Ce^^"^ (StovBSl) Y 2. 7 max Ba x-rays, 0.511 (124%, V*), 0.605 (6%) daughter (StovBSl) 133 Cs (a, 3n) (GirRS9a) A -85.1 (MTW) 307 / A Half life Type of decay ( y ); % abundance; Mass excess (A=M-A), MeV (C' =0); Thermal neutron cross section (£7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 1 I Ifl.-t h (MoriS65) 19.8 h (MitA58) 19. 5 h (ChubJ48) other! (NauRSO, WcimK-13) A EC (MounK42, ChubJ48) no lim 0.002% (MoriS65) others (GrenH65, MitA58) -87.0 (MoriS65, MTW) A chem (MounK42) chem, excit (ChubJ48) chem, mass spect (NauRSO) 135 daughter Ce (ChubJ48) not parent (MoriSfiS) V e Ba x-rays, 0.481 (1.9%), 0.588 (0.13%), 0.87 (0.24%, complex) 0.181, 0.444, 0.475 ■ Cs^^^(Q, 2n) (ChubJ48, NauRSO, MitA58) 134 Ba (d,n) (MovinK42, WeimK43) Ba^^®(p, 4n) (MoriS65) Ba^^^(p,n) (WeimK43) 9.5 m (NauRSO) 9.0 m (RobeBSO) 10.0 m (GirR59) other! (MauW47) A EC =67%, p'*’ =33% (NauRSO) -86.3 (MTW) A chem (MauW47) chem, excit, sep isotopes (RobeBSO) p" V 1. 9 max Ba x-rays, 0.511 (66%, 7*), 0.818 (2.5%) Cs^^^(a,n) (RobeBSO, NauRSO, GirR59) Ba^^^(d,n), Ba^^^(d, 2n) (RobeBSO) I 1 La 6x10 y sp act (BrosA56) others (ChubJ48, IngM48c, BrosA55) A EC (BrosA56) -88 (MTW) A mass spect (IngM48c) chem (BrosASfi) y Ba X-rays Ce^^^(n, Y)Ce^^^(p") (IngM48c, BrosA56, BrosASS, ChubJ48) ^138 l.lZx 10^^ y sp act (GloR57) 1. 1 X 10 ^ ^ y sp act (TurW56) others (PriRSl, MulhG52a) ... % A EC =70%, p" =30% (GloR57) EC 53%, p” 47% (TurW56) EC =94%, p" =6% (MulhG52a) 0.089 (IngM47e, WhiF56) -86.7 (MTW) A chem, mass spect (IngM47e) V 0.21 max Ba X-rays. 0.81 (30%). 1.426 (70%) I *39 ' 1 ' % A 2. 9x lO^^ysp act (HohK65) % A (T C 0. 193 (IngM47e) -86.6 (MTW) 1 37 6.0 (to Ce“ ) 0.6 (to Ce”^”’) (GoldmDT64) cel” 9.0 h {DanbG58) 8.7 h (BrosASS) A EC 99+%, pi" SO. 00 9% (StonN65a, LHP) -86 (MTW) A chem, n-capt (BrosASS) chem, genet (DanbG58) daughter (DanbG58) daughter Pr^^^ (DanbG58, DahC58) Y e La x-rays, 0.446 ( 2.3%, complex), 0.481 (0.06%, complex), 0.698 (0.04%), 0.92 (0.10%, complex) [0.004, 0,009], 0.408 137 daughter Pr (DanbGSS, DahC58) La”'^(p, 3n) (DanbGSS) Ce^^^(n,Y) (FranR64) alphas on Ba (BrosASS) C^137m 34.4 h (DanbG58) others (BrosASS, DanbGSe, ChubJ48) A IT 99.4%, EC 0.6% (StonN65a, LHP) -87 (LHP, MTW) A chem, excit (ChubJ48) n-capt, sep isotopes (HillRSla) 137 parent Ce ^ (DanbG58) 137 not daughter Pr (DanbG58) Y e Ce X-rays, 0.168(0.4%), 0.255 (11%), 0.762 (0.16%), 0.'82S (0.5%, complex) 0.214, 0.248 daughter radiations from Ce^^^ La”^(p, 3n) (DanbGSS) Ce^^^(n,Y) (HillRSla, KellHSl, FranR64) alphas on Ba (BrosASS) % A (T C 0.250 (IngM47e) -87.7 (MTW) 13 9 1.0 (to Ce^^’) 0.04 (to Cel^'^) (GoldmDT64) cel” 140 d (P001M48, PoolM43) others (WilleROO) A EC (EC(L)/EC(K) 0.37) (KetB56) EC(L) /EC(K) 0.21 (PruC54) -87.16 (MTW) A chem (PoolM43) chem, excit, cross bomb (P001M48) n-capt, sep isotopes (HillRSla) daughter Pr^^^ (StovBSl, HandT54c, DanbGSS) descendant Nd^^^ (StovBSl) Y La X-rays, 0.165 (80%) 0.126, 0.159 Ce^^®(n,Y) (HUlRSla, KellHSl, MosASO) La^^^(d, 2n) (PoolM43, PoolM48) Cel'^ 54 s (JameR60) 60 s (KotK60) 55 s (KetB56) A IT (KetB56) -86.41 (LHP, MTW) B n-capt (KetBS6) not daughter Pr^^^ (DanbGSS) Y e Ce X-rays, 0.746 ( 93%) 0.706, 0.740 Ce^^®(n, Y) (KetB56) La^^^(p,n) (JameR60) Cell° % A 0" c 88.48 (IngM47e) -88.13 (MTW) 0.6 (GoldmDT64) Cel^l 32.5 d (FreeM SOa) 33. 1 d (WalkD49a) others (PoolM48, WilleR60) A (opr / A Half life I Type of decay ( y ); % abundance; Mass excess (A 2 M-A),McV (C =0); Thermal neutron cross section (C7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production t, ^ (a) *5 X 10 *^ y sp % 11.07 (IngM47e) act (Mac(K 6 la) otherp (SvnF59, RU-W57) V ®'c no a (MacfR 6 la, SenF59) Q (RieW57) -84.63 (MTW) 1 (GoldmDT64) ^ 14 t Ce }J h (Va«iI58. M»rtiDW56. BallNSld, StovBSO. BotW46a) 14 h (KondESlc, WiUeR60) others (BunyD49, PoolM4 3) A 3 X 10^^ y sp % 100 (IngM48a, CollT57) act (PorsW54) A -86.07 (MTW) cr c 12 (GoldmDT64) 1 9. 2 h ( WyaE6l, BotW46a) 19.3 h (DWirJ42) 19. 1 h { JensE50) others (WilleR60) A p~ (DWirJ42) no EC or lim 0.5% (ReynJH50b) -83.85 (MTW) A n-capt (AmaE35, MarsJK35) P" Y 2. 1 6 max 1.57 (3.7%) Pr^^^(n, Y) (-AmaESS, MarsJK35, PoolM37, PoolM38a, DWirJ42, SerL47b) d c 20 (GoldmDT64) 13.59 d (PepD57) 13.76 d (WriH57) 13.6 d (HoffD63) others (FelL4 9, BallNSlf, RoyL56, PoolM48, MartiDW56) A (T C p“ (BallN51e, JoliF44) -83.11 (MTW) 89 (GoldmDT64) A chem (BallNSie, JoliF44) mass spect (HaydR46a) 143 daughter Ce (PoolM43, BotW46a, BallN51d) others (Hah043a. FinBSlc) P" Y 0. 933 max average (3 energy: 0.31 calorimetric (HovV64) no Y 142 143 Ce^^‘^(n, Y)Ce^^''(p ) (P001M43, BotW46a, BallNSld) fission (Hah043a, JoliF44, BallNSie, FinBSlc) P^144 17.27 m (PepD57) 17.30 m (HoffD63) others (NewA51a, SeiJSlb, Hah043a, Grum W46) A p (NewA51a) -80.81 (MTW) A chem, genet (NewASla. Hah043a) 144 daughter Ce (Hah043a, NewASla) P" Y 2. 99 max 0.695 ( 1.5%), 1.487 (0.29%), 2.186 (0.7%) 144 daughter Ce (Hah043a, NewASla) Pr^45 5.98 h (DroB59) 5.9 h (MarkS54, AlsJ60) A p' (MarkS54) -79.66 (MTW) B chem, excit (MarkS54) chem, sep isotopes (HoffD64) 145 daughter Ce (MarkS54) P“ Y 1.80 max 0.072, 0.68, 0.75, 0.92, 0.98, 1.05, 1.16 £ission (MarkS54, DroB59, AlsJ60, Ho££D64) 146 Nd (Y,p) (Ho££D64) _ 146 Pr 24.0 m {HoffD64) others (SchumR45a, CareA53, GotH46) A p" (GotH43) -76.8 (MTW) B chem, genet (GotH43) 146 daughter Ce (GotH43, Hah043a, GotH46, CareA53) P‘ Y 3. 7 max 0.455 (77%), 0.74 (16%), 0.78 (15%), 0.92 (6%), 1.37 (6%), 1.51 (27%), 1.72 (4%), 2.23 (4%), 2.39 (3%), 2.73 (1.7%) fission (GotH43, Hah043a, SchumR45, GotH46, BernsW54, HoffD64) 14f» Nd (n,p) (RamayA65) _ 147 Pr 12.0 m (HoffD64) 12 m ( WilleR60) A p” (Hof£D64) -75.5 (Ho££D64, MTW) B chem, genet (HoffD64) .T.T..147, u* 147 parent Nd, daughter Ce (HoffD64) P" Y 2. 1 max 0.078 (17%, complex?), 0.127 (9%, complex?), 0,32 (47%, complex), 0.56 (3 9%), 0.61 (10%), 0.65 (24%), 1.26 (11%) Nd ( Y, p), fission (HoffD64) „ 148 Pr 2.0 m (HoffD64) A p“ (Ho££D64) -72.9 (Ho££D64, MTW) B chem, genet energy levels (HoffD64) 148 daughter Ce (HoffD64) P’ Y 4. 2 max 0.30 fission (HoffD64) o 149 Pr 2.3 m (Ho£fD64) V p" (Ho££D64) E excit, sep isotopes (HoffD64) p‘ 2.8 max Ndl^°(Y,p) (Ho££D64) Y 0.08, 0.155, 0.325, 0.36, 0.745 Tvtjl37 60^^ 55 m (GromK65) P'^, [EC] (GromK65) B chem, atomic level spacing, genet (GromK65) 1 37 parent Pr (GromK65) P^ e Y 3 max 0.067 [Pr x-rays, 0.109, 0.511 (Y*), 0. 55 ( complex) ] protons on Ta, Er (GromK65) daughter radiations from Pr^^^, cel” 311 luiCiipC / A Mulflifc Type of decay ( ); % abundance; Mass excess (Am-A), MeV (C’=0); Thermal neutron cross section (a), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production imh'*** boN** IZ m (StovBSl) V (StovBBl), [EC] D chem, excit (StovB51) V 2.4 max [Pr X-rays, 0.511 (V*)] Pr^“^^(p, 4n) (StovB51) Nd‘^» ■5 h ( GromK64) V (GromK64) F chem (GromK64) protons on Ta, Er ( GromK64) Nd*'’ [«5 hi (GromK63b) A [EC.p'^j -82 (MTW) F [genet] ( GromK63b) [daughter (GromK63b) ..,139m see Nd [daughter (GromK63b) 5.5 h (StovB51) 5.2 h (BoncN6l) A IT {+EC+P'''? ) (GromK63b) EC =90%, p'*' =10% (with (StovBBl) -82 (LHP, MTW) B chem, genet (StovB51) atomic level spacing (GromK63b) 139 ancestor Ce (StovBSl) e V 3. 1 max 0.072, 0.107, 0.189, 0.226 Nd X-rays, Pr X-rays, 0.114 (t 80), 0.327 (t 50), 0.511 (t 1400), 0.73 (t 210, complex), 0.82 (T 70, complex), 0.90 (t 25), 0.983 (t 70), 1.03 (t 30), 1.10 (t 30), 1.24 (T 20), 1.34 (t 20), 1.48 (t 10), 1.58 (t 8), 2.05 (T 10) 139 daughter radiations from Pr 139 daughter radiations from Nd included in above listing 141 Pr (p, 3n) (StovBSl) Nd‘^“ 3.3 d (WilkG4 9c) A EC (BrowCI52) EC(K)/EC(L) 6 (BiryE60) -84 (MTW), A chem, excit, genet ( WilkG49c) parent Pr^^^ (WilkG4 9c, BrowCI52) V Pr X-rays daughter radiations from Pr^"^^ Pr^'^^(p, 2n) (StovB51) Pr^^^(d, 3n) (WilkG49c, BrowCI52) Nd‘^> 2.42 h (WilkG49c) 2.5 h (KurbJ42) 2.6 h (BiryE63) others (WilleRbO) A EC 96%, p'*' 4% (BiryE63) EC 98%, p'*' 2% (PolH58) others (A1IWL63) -84.27 (MTW) A excit (KurbJ42) chem, excit (WilkG49c) others (PoolM38a) Y 0.79 max Pr X-rays, 0.145(0.2%), 0.511 (6%, Y^), 1.14 (2%, complex?), 1.30 ( 1%) Pr^^^(p, n) (KurbJ42, WilkG49c) Pr*‘^^(d, 2n) (WilkG49c, PolH58) Nd^^*'" 64 s (JameR60) 61 s (KotK60) A [IT] (KotK60) -83.52 (LHP, MTW) C excit (JameR60) chem (KotK60) Y 0,755 Pr^‘*'(p,n) (JameR60) Ndllf % A (T C 27.13 (IngM48a) 27.09 (WalkW53) 27.3 (WhiFBb) -86.01 (MTW) 17 (GoldinDT64) Ndli^ % A 6=^ 10^^ y (Iso1A65) % A (T C 8.29 (WhiF56, WalkW53) 8.30 (IngM48a) -81.47 (MTW) 50 (GoldmDT64) ktj146 Nd % A C 17.18 (IngM48a) 17.26 (WalkW53) 17.1 (WhiF56) others (IngMBOa) -80.96 (MTW) 2 (GoldmDT64) 312 Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A), MeV (C" = 0); Thermal neutron cross section (C7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 60^-1 11,06 d (WriH57) 11.02 d (HoffD63) 11.1 d (A1 sJ 60) others (KondESla, RutW52, MarinJSl, EmmWSl, BotW46a) A P (MarinJ47, MarinJSl) -78.18 (MTW) A chem, genet (MarinJ47, MarinJSla) 147 parent Pm (MarinJ47, MarinJSla) 147 daughter Pr (HoffD64) P e V 0. 8 1 max 0.046, 0.084 0.091 (28%), 0.319 (3%), 0.43 (4%, complex), 0.533 ( 13%) 147 daughter radiations from Pm Nd*“^®(n, V) (BotW46a, MarinJ47, CorkJ48a, MarinJSlc) fission (MarinJSl) % A <7 C 5.72 (IngM48a) 5.74 (WalkW53) 5.67 (WhiF56) others (IngMSOa) -77.44 (MTW) 4 (GoldmDT64) 1.8 h (RutW52, WilleR60, HoffD64) 2.0 h (BotW46a, PooIM38a) others (MarinJ51c) A p" (PoolM38a) -74.41 (MTW) A excit (PoolM38a) chem, genet (MarinJSlc) parent Pm^"^^ (KruP52, MarinJSlc) ^ 1 1 1. 5 max 0.051, 0.068, 0.079, 0.090, 0.165, 0.195 Pm X-rays, 0.114 (18%), 0.156 (4%), 0.210 (27%), 0.27 (26%, complex), 0.327 (5%), 0.424 (9%), 0.541 (10%), 0.654 ( 9%) 14 9 daughter radiations from Pm Nd*'*®(n,Y) (PoolM38a, BotW46a, MarinJ51c, GopK64) TVTjlSO Nd *1/2 >10^^ y sp act (DixD54a) tj /2 (PP) >2x 10*® y sp act (CowC56) others (MulhG52) % A 5.60 (IngM48a) 5.63 (WalkW53) 5.56 (WhlF56) others (IngMSOa) -73.67 (MTW) 1.5 (GoldmDT64) IVTjlSl Nd 12 m (RutW52, MarinJSlc) others (WilleR60) A p“ (RutW52) -71.0 (MTW) B n-capt (MarinJSlc) sep isotopes, n-capt, atomic level spacing (RutW52) parent Pm^^^ (RutW52) P e y 2. 0 max 0.072 Pm X-rays, 0.086 (5%), 0.118 (40%), 0.138 (6%), 0.174 (10%, complex), 0.256 ( 11%), 0.425 (5%), 0.737 (5%), 0.797 (3%), 1.122 (2%), 1.180 (9%) Nd*®°(n, Y) (RutW52, MarinJSlc, SchmL59a, FosD65) r>„141 61^^ 22 m (GratI59) 20 m (FiscV52) A p*" 57%, EC 43% (GratI59) -80.7 (MTW) A chem, excit (FiscV52) mass spect (GratI59) y 2. 6 max* NdX-rays, 0.195(13%), 0.511 (114%, Y*) 141 daughter radiations from Nd Pr*'**(Q, 4n) (GratI59) 142 Nd (p, 2n) (FiscV52) T3 142 Pm 40 s (GratI59) others (MarsT58) A p'* =95%, EC =5% (GratI59) -81.2 (MTW) B chem, genet (MarsT58) excit (GratI59) 142 daughter Sm (MarsTSS) V 3.78 max (MarsT58) NdX-rays, 0.511 (190%, v"*") 142 142 Nd ^(a, 4n)Sm (EC) (GratI59, MarsT58) Nd*“*^(p, n) (GratI59) 0.73 y (PagI63, BunnL64, FunE60) 0.78 y (WilkGSOe) A EC (WUkGSOe) -82.9 (MTW) A chem, excit (WilkGSOe) chem, mass spect (BallNSS) Y e NdX-rays, 0.742 (47%) 0.698 Sm*‘*‘*(p, 2n)[Eu*“*®](EC) 14^ Sm (EC) (FunE60) Pr*“**(a, 2n) (WUkG50e, FiscV52, OfeS59, BunnL64) 14^ Nd (p, n) (Pagl63) 0.96y (BunnL64) 1.03 y (Pagl63) 1. 1 y (FunE60) 1.2 y (TotK59c) others (FiscV52) A EC (FiscV52) no p'*, lim 0.2% (OfeS59) -82 (MTW) A chem (FiscV52) chem, mass spect (BallN58) excit (OfeS59) Y e NdX-rays, 0.474(45%), 0.615 (99%), 0.695 ( 99%) 0.430, 0.571, 0.651 Pr^‘^^(Q,n) (OfeS59, TotK59c, FiscV52) 1 44 Nd (p, n) (Pagl63, SugiyK61, FiscV52) t^144? Pm 60 d (PagI63) '• (PagI63) F sep isotopes (Pagl63) Y Y spectrum may be identical to 144 1.1 y Pm (Pagl63) 144 Nd (p,n) (Pagl63) «™145 Pm 17.7 y (BrosA59) others (ButeFSl) A EC (ButeFSl) a 3 X 10“^% (NurM62) -81.33 (MTW) A chem, genet (ButeFSl) chem, mass spect (BallN58) 145 daughter Sm (ButeFSl) Y e NdX-rays, 0.067 (1.0%), 0.072 (2.3%) 0.023, 0.028, 0.061 _ 144, 145,-,.,. Sm (n,Y)Sm (EC) (ButeFSl, Bros AS 9) d™145 Pm 16 d (LongJ52a) P* (LongJ52a) F sep isotopes (LongJ52a) p" 0.45 max protons on Nd (LongJ52a) 313 T~ Type of decay ); % abundance; Mass excess Class; Identification; Genetic relationships r" Major radiations: approximate energies (MeV) and intensities Principal means of produaion luilopc / A lUU-lifc 1 (A=M-A), MeV (C 0); Thermal neutron cross section ((7), barns 4 •» y (PagI63) V EC 65%. p" 35% (FunE60 A chem, excit (FiscV52) p" 0. 78 max 146 Nd (p, n) (Pagl63, 1.9 y (FunE60) 1 y (FiicV52) 1-2 y ( LongJ52a) A EC 69%. p" 31% (PagI63) -79.52 (MTW) chem, sep isotopes, genet energy levels (FunEfiO, FunE62) V Nd X-rays, 0.453 (65%), 0.75 (65%, doublet) FiscV52, LongJ52a) Nd^'^®(p. 3n) (FunE60) Pn,'-’ 2.62 y ( WheeE65) p" (BallNSlg) A chem (MarinJ47, MarinJ51a) p" 0. 224 max 146 147 - Nd (n,Y)Nd (p ) 2.60 y (FlyK65a) 2.64 y (MerW57) 2.66 y (SchumR56) A ®‘ 27.8 h (HoffD63) V p“ (RutW52) A genet, atomic level spacing p~ 1. 19 max Nd^®°(n. V)Nd‘®'(p") 28.4 h (BunnL60) 27.5 h (RutW52) A -73.40 (MTW) (RutW52) chem (BunnLbO) e 0.003, 0.018, 0.053, 0.058 (RutW52, BunnL60) daughter Nd^^^ (RutW52) Y Sm X-rays, 0.07 (5%, complex), 0.10 (7%, doublet), 0.17 (18%, complex), 0.24 (5%, complex), 0.275 (6%), 0.340 (21%), 0.45 (5%, complex), 0.66 (3%, complex), 0.72 (6%, complex), others to 0. 96 *> Pm* 12.5 h (FolR51, V p” (PoolM38a) E (PooIM38a) deuterons on Nd (PoolM38a) chem (FolRSl) (PoolM38a) fission (FolRSl) 6.5 m (WilleR58, #.* p“ (WilleR58) B sep isotopes, excit p" 2. 2 max Sm'®^(n,p) (WillcR58. WilleR60) A -71 (MTW) (WilleR58) genet energy levels (AteA59) Y [Sm x-rays], 0.122. 0.245 WillcR60, AtcA59) 5. 5 m (KotK62) p” (KotK62) E excit, sep isotopes (KotK62) p" 1. 65 max Sm*®^(Y,p) (K01K62I A -70.8 (MTW) Y 0.090 (?), 0.12, 0.18 2.5 m (WilleR58, V p“ (WilleR60) c excit, sep isotopes p“ 2. 5 max Sm*®‘‘(n,p| (Will.R t. WilleR60) (WUleR58) WlIIvR60) c 142 62®"" 73 m (GratI59) ... EC =50%. p4 =50% B chem (MarsT58) Y Pm X-rays, 0.15-0.35 (complex). Nd*^^(Q. 4n) (Cratl 72 m (MarsT58) (DCapG59) excit (GratI59) 142 parent Pm (MarsT58) 0.511 (100%, •»*) 142 daughter radiations from Pm MarsT'fj. „ 143 Sm 9.0 m (SUE56) V EC 52%. p"" 48% B chem (ButeFSO) Y Pm x-rays, 0.511 (100%, Y*) Nd*'‘''(-.. ■> 8.9 m (AlfWL63a) (DCapG59) excit (SUE56) -144, 8.6 m (Gratis 9) 8.5 m (WilleR60) 8.3 m (MirM56) 8.8 m (KotK60) others (ButeFSO) EC =63%. p'*' =37% (Gratis 9) Others (SUE56, MirM 56) chem, sep isotopes (MirM 56) MirM *. • > M4 I { si p »i4 F. } tr*. D* M A -79.6 (MTW) 314 Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A), MeV (C"=0); Thermal neutron cross section (C7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production <- 143m 62®"^ 64 s (KotK60) 65 s (AlfWL63a) 61 s (BroaK65) others (JameR60) A [IT] (KotK60) -78.8 (LHP, MTW) C chem (KotK60) excit (AlfWL63a) Y 0.748 144 Sm (n, 2n) (AlfWL63a) 144 Sm (Y,n) (KotK60) 144 Sm (p, pn) (JameR60) c 144 Sm % 3.16 (IngM48) 3.15 (CollT57) 3.02 (AitK57) A -81.98 (MTW) (T C =0.7 (GoldmDT64) e 145 Sm 340 d (BrosA59) others (ButeFSl, CorkJ48a, IngM47c) A (7 C EC (ButeF51, RutW52) -80.67 (MTW) = 100 (GoldmDT64) A mass spect (IngM47c) chem (ButeF51) 145 parent Pm (ButeFSl) y e Pm x-rays, 0.061(13%), 0.485 (3 X 10"^%) 0.016, 0.054 145 daughter radiations from Pm 144 Sm (n, Y) (ButeF51, RutW52, IngM47c, BrosA59) e 146 Sm 7 7 X 10 y sp act (NurM 64) 7 5x10 y yield (DunlD53) % A a (DunlD53) <2 X 10“'^ (Mac£R60) -81.05 (MTW) B chem, decay charac (DunlD53) 2.46 147 Sm (n, 2n) (NurM64) alphas on Nd (DunlD53) „ 147 Sm 1.05 X 10^^ y sp act (WriP6l) others (DonhD64, Mac£R61a, GraeG6l, BearG54, BearG58, KarrM 60, KarrM 60a, LatC47, HosR35, PicE4 9) % A (T c a (HevG32, Lib'W33) 15.07 (IngM48) 15.1 (C011T57) 14. 9 (AitK57) -79.30 (MTW) = 90 (GoldmDT64) A chem (HevG32) sep isotopes, mass spect WeaBSO) chem, genet, mass spect (RasJ50) 147 daughter Pm (RasJSO) a 2.23 00 ti /2 (°-) y sp act (Mac£R6la) *1/2 1.2 X 10*^ y Sp act (KarrM60) % 11.27 {IngM48) 11.35 (C011T57) 11.22 (AitK57) no a (MacfR61a) a (KarrM60) A -79.37 (MTW) c 149 Sm >1 X 10^^ y sp act {MacfR6la) 14 4 X 10 y sp act (KarrM60) % 13.82 (AitK57) 13.84 (IngM48) 14.0 (C011T57) no a (MacfR61a) a (KarrM 60) A -77.15 (MTW) (T C 41, 500 (GoldmDT64) c 150 Sm % 7.47 (IngM48, CollT57) 7.40 (AitK57) A -77.06 (MTW) •‘3 6i^“ 3.3 m (KotK65) V p'*' (KotK65), [EC] E excit, decay charac (KotK65) P" 4. 0 max 144 Sm (d, 3n) (KotK65) Y 0.511 (V*) » 144 £u 10.5 s (MesR65) V p'*' (MesR65). [EC] c excit, decay charac (MesR65) p^ 5. 2 max 144 Sm (p.n) (McsR65) A -75.66 (MesR65, MTW) Y 0.511 (V*) Eu‘^“ 18 m (HoffR52) V p"^ (HoffR52) G excit, sep isotopes (HoffR52) activity not observed (01kJ59b, MesR65) 144 protons on Sm (HoffR52) _ 145 Eu 5. 9 d (FrieA63) 5.6 d (GrovJ59) others (HoffR51) A EC 99%, p'*' 1% (FrieA63) -77.9 (MTW) A chem, excit, sep isotopes (GrovJ59) chem, mass spect (FrieA63) daughter Gd^"^^ (GrovJ59) Y Sm X-rays, 0.23?, 0.33?, 0.53 (complex), 0.656 (t 30), 0.766 (t 10), 0.894 (t 100), 1.66 (T 16) 2.00 (T 8) Sm‘^^(a, 3n)Gd'‘‘^(EC) (GrovJ59, 01kJ59b, FrieA63) Sm*‘^'^(d,n) (GrovJ59) daughter Tb^^'’ (HoffRSl) e” 0.063, 0.103, 0.847 145 daughter radiations from Sm F 146 Eu 4.59 d (TakekE64) others (FrieA63, GrovJ59, FunE62, GoroG58, AntoN59a, GoroG57a) EC 96.5%, p'*’ 3.5% (FunE62) EC 95.5%, p'*' 4.5% (TakekE64) others (FrieA63) -77.18 (MTW) A chem, genet (GoroG57a, GoroG58, GrovJ59) chem, mass spect (FrieA63) 146 daughter Gd (GoroG58, GrovJ59) Y Sm x-rays, 0.511 (7%, V*), 0.634 (77%, doublet), 0.666 (12%), 0.71 (13%, complex), 0.749 (100%), 0.90 (8%, complex), 1.058 (7%), 1.16 (6%, complex), 1.298 (6%), 1.408 (5%), 1.535 (8%), others to 2.93 Sm^‘‘^(a, 2n)Gd'^^(EC) (GrovJ59, F rieA63) P" 2. 11 max (0.14%), 1.47 max (3.3%) e 0.586, 0.702 38 h (HoffRSl) others {FunE62) (HoffRSl) E excit, sep isotopes (HoffRSl) chem (FunE62) 146 not daughter 50 d Gd (FrieA63, AntoN6l) 1469 daughter 7 h Gd (GuseI57) Y Y-ray spectrum may be identical to that of 4. 59 d Eu^"^^ 147 Sm (d, 3n), alphas on Sm'"’"’ (HoftR51) Sm‘‘‘’(p, 2n) (FunE62) Eu'"^ 21.5 d (FrieA63) 24 d (SchweC62, HoffRSl, RasJ53, MackRC53) 25 d (AntoN58c) • EC 99.5%, p"*" 0.5% (MNulJ64) a 0.002% (SUA62, TotK64) others (HoffRSl, FrieA63) A chem, excit, sep isotopes (HoffRSl) chem, mass spect (FrieA63) 147 daughter Gd (GoroG57a) Y e Sm X-rays, 0.122 ( 20%), 0.198 (24%), 0.600 (7%). 0.680 (11%), 0.800 (6%), 0.957 (9%), 1.079 (9%), 1.25 (1.2%) 0.030, 0.075, 0.114, 0.151 Sm‘‘‘^(p,n) (HoffR5l, RasJ53, SchweC62) Sm*‘*®(p, 2n) (MNulJ64) dcuterons on Sm (RaBJ53) A -77.5 (MTW) a 2.91 _ 148 Eu 54 d (WilkGSOc) 50 d (HoffRSl) 58 d (SchweC62a) 53 d (MarinJ51d) A EC 99+%, p'*' 0.13% (BabC63b) a 9 X 10"^% (TotK64) -76.26 (BabC63b, MTW) A chem (MarinJSld) excit, sep isotopes (HoffRSl, MackRC52) mass spect (BabC63b) Y Sm X-rays, 0.413 (18%, complex), 0.551 (120%, complex), 0.62 (90%, complex), 0.72 (18%, complex), 0.872 (7%), 0.917 (5%). 0.967 (5%), 1.033 (7%), 1,16 (5%, complex), 1.345 (8%), 1.62 (11%, complex) Sm***®(p,n) (HorfRM. MackRC52. WilkG'Ua. SchwcC6fc‘ » ) Sm *** ^(d, n) (KurbJ4 ■. MarinJ^'ld) Sm^***(d. 2n) (BjI*' e 0.02-0.04, 0.51, 0.193, 0.366. 0.505, 0.544, 0.584 P^ 0. 92 max 2.63 Eu'4’ 106 d (Harl061) others (AntoN59, DzhB62d, WanF62) A EC (Harl06l, HarmB6l, AntoN59) _7 no a, lim 4 x 10 % (SiiA62) -76 (MTW) A sep isotopes, excit (HoffR52) chem, excit (MackRC53, Harl06i, Harl063) genet energy levels (JhaS62b, AlfV64) Y e Sm X-rays, 0.277 (f 10), 0. .28 (t 10) 0.015, 0.021, 0.230, 0.281 14 ' :^m (p. n ) 1 H •i:‘ HarM i. 1!.. r 1 ' 0 sm ( p. • ' » 1 n j f > r *. HArt06i > 316 Type of decay ); 1 % abundance: Mass excess Class; Identification; Genetic relationships Principal means of production Isotope Z A Half-life (A=M-A),MeV (C'-O); Thermal neutron approximate energies (MeV) and intensities cross section ((7), barns „ 150 Eu 12.55 h (SiiA62) V 90%, EC 9%, p'*' 0.4% A chem, excit (ButeFSO) p" 1.01 max Sm^^°(p.n) (Hof£R52, 63 12.8 h (YosY63) (GutM65) chem, excit, sep isotopes 1. 24 max MackRC52, WilkGSOc, 13.7 h (MackRC53) p" 95%, EC 4%, p'*' 1% (YosY63) p" 95%, EC 5% (SiiA62) {Hof£R52) P HarmB61, YosY63) 14.0 h (RiccR62) 15.0 h (WilkG50c) others (WilleR60, ButeF50) excit, sep isotopes (MackRC52) parent Gd^^® (KarrM6l, Y Sm x-rays, 0.334 (4%), 0.406 (3%). 0.511 (0.8%, Y^^), 0.619 (0.2%), 0.713 (0.2%), 0.831 Sm^®°(d, 2n) (YosY63) A -74.81 (MTW) SUA62) (0.5%), 0.921 (0.4%, doublet), 1.165 (0.4%), 1.224 (0.4%), 1.224 (0.3%), 1.630 (0.09%), 1.964 (0.2%) Eu'50 =5 y (GutM61) V EC (HarmB6l, GutM6l) A chem, genet energy levels Y Sm X-rays, 0.334 (96%), 0.439 Sm^^^(p,n) (HarmB6l, >5 y (HarmB6l) (HarmB61, GutM61) (86%), 0.584 (60%), 0.74 (21%, doublet), 1.049 (9%), 1.248 (5%), 1.347 (4%) GutM61) e 0.287, 0.327, 0.392 % 47.77 (HessD48) 47.86 (CollT57) A -74.67 (MTW) O’ 5900 (to Eu^^^) 2800 (to (GoldrtiDT64) IT Eu 12.7 y ( LocE56, EC 72%, p" 28%, p”^ A n-capt, mass spect (IngM47) p” 1.48 max Eu^^^(n,V) (IngM47, LocE53) 0.021% (LHP) chem (MarinJ49) 0 07R, n M n 1 ?n SerL47b) 12.2 y (GeiKW57) others (KarrD52, A -72.89 (MTW) P" 0. 71 max KasJ53) , complex) ( WinsL5 Ic) TT 157 Eu 15. 1 h (DaniW63) p" (WinsL51b) A chem (WinsL51b) p" 1. 3 max Gd*^°(p, o) (HarmB62) 15.4 h (WinsL51b) A -69.43 (LHP, MTW) genet energy levels (HarmB62) e 0.004, 0.014, 0.046, 0.056 neutrons on Gd (KantJ64) cross bomb (DaniW63) Y Gd X-rays, 0.055 ( 5%,), 0.064 sep isotopes (ShidY64) (27%), 0.32 (5%, doublet), 0.37 (14%,, doublet), 0.413 (27%), 0.477 (5%,), 0.623 (6%,) 317 iMlIupC /. A HjUlifc Type of decay ( ); % abundance; Mass excess (A=M-A). MeV (C' =0); Thermal neutron cross section (^7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities 1 Principal means 1 of production 6)^“ •16 m (MunH65, SchlmF65a. DaniW63) 60 m ( WineLSlb) i ' A p" (WinsLBlb) -67.1 (MTW) B chem (WinsLSlb) chem, genet energy levels (DaniW63) y 2. 5 max [0.049, 0.072] 0.080 (T 100), 0.182, 0.52 (t 25, complex), 0.61 (t 8), 0.95 (t 95, complex), 1.11 (t 11), 1.19 (t 16) ! ;Gd^^°(d, a) (DaniW63) 'fission (WinsL51b) \ 18. 1 m (MunH65) 19.0 (IwaT65) others (IwaX64, ButeFSO, KuroT61b) V A P~ (KuroTblb) -66.02 (IwaT65, MTW) C excit (ButeF50) sep isotopes, genet (IwaT64) parent Gd^^^ (IwaT64) Y 2. 6 max 0.07 (42%). 0.09(18%). 0.15(14%), 0.22(5%), 0.67(21%), 0.73 (10%), 0.8(11%, complex? ), 1. 1 (11%, complex), 1.5(5%, complex? ) 'cd^^°(Y,p) (IwaT64, j KuroT61b, ButeF50) 1 Eu‘‘° ■2.5 m (TakaK6i) A p" (TakaK6l) -64 (MTW) F decay charac (TakaK6l) P" Y 3.6 m ax no Y Gd^^°(n,p) (TakaK61) ^5 m (G^ovJ59) others (01kJ59b) EC, p"*" (GrovJ59, 01kJ59b) A chem, excit, sep isotopes, genet (GrovJ59) 145 parent Eu (GrovJ59) p" Y 2.4 max EuX-rays, 0.511 (y"^), 0.80 (t 9) 1.03 (t 10), 1.75 (t 100, complex? ) Sm^^^(a, 3n) (GrovJ59, 01kJ59b) Cd‘^‘ 50 d (FrieA53) 46 d (GrovJ59) others (AntoN59a, GoroG58, GoroG57a, 01kJ59) A EC (GoroG58) EC =99%, p'*' =1% (FrieA63) -76 (MTW) A chem, genet (GoroG57a, GoroG58) chem, excit, sep isotopes (GrovJ59) chem, mass spect (FrieA63) 146 parent Eu (GoroG58, GrovJ59) Y EuX-rays, 0.078 (T 30), 0.115 (t 100, complex), 0.155 (T 45) 0.066, 0.106 daughter radiations from 4.59 d „ 146 Eu 144 Sm (a, 2n) (GrovJ59, FrieA63) 7 h (01kJ59, SunKSla) 12 h genet (GuseI57) V Q (SunKSla) a, [EC] (01kJ59) F chem (GuseI57, 01kJ57) 4. u r- 146? parent 38 h Eu (GuseI57) Y 0.22, 0.34, 0.55, 0.72 alphas on Sm (SunKSla) protons on Tb (01kJ59) protons on Ta (GuseI57) Gd‘4^ 35 h (AntoN58c) ZZ h (FrieA63) 29 h (ShirV57) A EC, no p^, lim 1.2% (ShirV57) p^ (weak) (FrieA63) -75 (MTW) A chem, genet (GoroG57a) chem, excit (ShirV57) chem, mass spect (FrieA63) 147 parent Eu (GoroG57a) 147 daughter Tb (TotK60) Y e EuX-rays, 0.229 (t 150). 0.39 (t 85, complex), 0.64 (t 70, complex), 0.77 (T 60, complex), 0.932 (t 60), 1.10 (t 19, complex) 0.181, 0.221, 0.321, 0.348, 0.388 147 daughter radiations from Eu 144 Sm (2 is highly improbable (LHP) p' 2. 34 max alphas on Eu (RolM53) Tbt<157] >17 h (RolM53) p*' (RolMB3) G chem (RolM53) probably a mixture of Tb*5^ Tb*5^ and Tb*^^ (LHP) e 3. 1 max 0.076, 0.088, 0.126, 0.153, 0.20 alphas on Eu (RolM53) 319 Ivilopc /. A 6i‘ Tb Tb 15Z Tb 155 Type of decay ); iijir-lifc % abundance; Mass excess (A = M-A), MeV (C“-'=0); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production cross section (^7), barns 4 10 h (TotKbOa) V EC 84%, a =16%. no p''' A chem, mass spect (RasJSO, 7 Gd X-rays, 0.16, 0.35 Pr^‘^^(C^^, 4n) (TotK59) 4 ^ h (BruniE65) (TotK60a, RasJ53, TotK60a) e 0.115, 0.127, 0.157, 0.301, 0.338, Eu^^^(a, 6n) (RasJ53) othert (RasJ53, RolM 53 ) parent Eu^^^(HoffR51) 0.587 SurY 57) -71.4 (MTW) daughter (TotK59) a 3.95 daughter (MaefRfiZ) descendant Er^^^ (MacfR63a) daughter radiations from Gd^^^ 4- 3 m (MacfR62, V [IT+EC4P'''] 99+%, B excit, cross bomb, genet V [Tb X-rays] _ 139,^16, , La (O, 6n) MacfR64) Q 0.0Z5% (MacfR64) (MaefRfiZ) 149 parent Tb (MaefRfiZ) a 3.99 149 daughter radiations from Tb (MaefRfiZ, MacfR64) 3. 1 h (TotK59d, #.* EC, p'*' (TotK59d, A chem, mass spect (TotK59d, p" 3. 6 max protons on Gd TotKbOa, BoncN6l) TotK60, BoncN6l) no a, lim 0.05% (TotK60a) TotK60a) V Gd x-rays, 0.511 (T 100, v"^), 0.637 (t 100), 0.93 (T 35) (TotK59d, TotK60a) A -71.03 (MTW) 18 h (TotKbOa, EC 99+%, a 0.0005% A chem, excit (RasJ53, V Gd X-rays, 0.108 (35%). 0.18 Eu^®^(u,4n) (TotK58a, BaranVSS) (MacfR64) MihJ57a, TotK58a) (18%, doublet). 0.252 (35%). MacfR64) 19 h (RasJ53) -71.6 (MTW) chem, genet (BaranV58) 0.Z88 (3Z%), 0.40 (complex), protons on Gd (TotK60a, 20 h (MihJ57a) chem, mass spect (TotK60a) 0.44 (complex), 0.48 HarmB62) Others (TotK58a, AntoN58) parent Gd^^^ (BaranV58) (complex), 0.60 (complex), 0.7Z (complex). 0.87 e 0.058, 0.100, 0.130, O.ZOZ, 0.Z37 a 3.42 17.4 h (TotKbOa) EC =80%. p"^ =20% A chem, genet energy levels p'^ Z. 8Z max Eu^®^(a, 3n) (TotK59b) 18.5 h (TotK59b) ( GromK65a) (TotK59b) 0.221, 0.263, 0.294, 0.336, 0.382, 0.536, 0.565, 0.607 protons on Gd (TotKfiOa, 19.6 h (StriA62) chem, mass spect (TotKfiOa, StriA62) Others (BoncNbO, (TotK59b) -70.5 (MTW) StriAfiZ) BoncN 6 1, AbdurA60a ) A daughter (BasiA60a) Y Gd X-rays, 0.271 ( T 13), 0.344 (t 100), 0.411 (T 6), 0.586 (T 14), 0.779 (T 14), 0.974 (t 10), I.IZ (f 10, complex), 1.31 (f 11, complex), 1.60 (t 7, complex), 1.95 (t 8, complex), Z.40 (t 9, complex), Z.70 (T 6, complex) 4.0 m (01kJ59a) V EC, p’*', a 0.002% C excit, cross bomb, sep Y Tb x-rays, 0.14, 0.23, 0.511 (v"^) _ 151,, , -.152, Eu (a, 3n), Gd (p»n) (01kJ59a) isotopes (01kJ59a) (01kJ59a) 55 h (TotKbOa) ... EC (MihJ57a) A chem, excit, genet Y Gd X-rays, 0.083 ( 11%, complex), protons on Gd (MihJ57a, 63 h (StriA61) -71 (MTW) (MihJ57a) 0.11 (12%, complex), 0.17 (9%, HarmB62, TotKfiOa) 62 h (MihJ57a) chem, genet (BaraV58) complex), O.ZiZ (30%), 0.Z50, Others (TotK59a, chem, mass spect (TotKfiOa) 0.33, 0.88 Bara V 58, AntoN58) parent (MihJ57a, e 0.012, 0.034, 0.037, 0.040, 0.044, BaraV58) 0.052, 0.057, 0.162 daughter Dy^^^ (DobA58) daughter radiations from Gd^^^ 21.0 h (TotK60a) ... EC. p''' =0.5% (?) A chem, excit (WilkGSOc) Y Gd x-rays, 0.123, 0.187, 0.248, Eu‘^'(o,n) (WilkGSOc) 17 h (WilkGSOc, RolM53, HandT55b) Others (MihJ57a, AntoN58, HenrR59, TotK59a) A ( WUkGSOc) -70 (MTW) chem, genet energy levels (MihJ57a) chem, excit, sep isotopes (HandT55b) chem, mass spect (TotKfiOa) e 0.30 (complex), 0.347, 0.53 (complex), 0.65 (complex), others to 2. 5 0.073, 0.115, 0.122, 0.198 Eu*^^(a, 3n) (TotK59a) protons on Gd (HandTSSb, MihJ57a, TotK60a) not daughter Dy (MacfRPl) 8. 5 h (TotK60a) V EC. p'*' (? ) (HandT55b) A chem, excit (HandT5 5a) Y Gd X-rays, 0.123, 0.18?. 0.248, protons on Gd H, =7.5 h (HandT55b) -70 (MTW) chem, genet energy levels 0.53 (complex), 0.65 (complex) MihJ57.-i, TotK60a) 8 h (MihJ57a) (MihJ57a) chem, mass spect (TotK60a) e 0.073, 0.115, 0.122, 0.198 not daughter Dy (Mac£B.6l) 5.6 d (MihJ57a) ... EC (MihJ57a, HarmB6Z) A chem, excit (WilkGSOa) Y Gd x-rays, 0.087 (37%), 0.105 protons on C<‘ O V* J 7. 5.4 d (TotK60a) -71 (MTW) chem, sep isotopes, genet (25%), 0.163 (8%, complex). Hand! b. 4.5 d (DzhB58) energy levels (MihJ57a) 0.180(8%), 0.262 (7%), 0 468 Others (AntoN58) chem, mass spect (TotKfiOa) (4%) others (HandT55b) daughter Dy^^^ (GoroG57a, e 0.011, 0.034, 0.053, 0.078, 0.1 10, 0.129, 0.210 DobA58, MayM64) 1 320 Isotope Z A . — Half-life Type of decay ); % abundance; Mass excess (A=M-A),MeV (C'=0); Thermal neutron cross section (^7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production 1 65^*’ 5. 1 d (TotKbOa) 5.3 d (HenrR59) 5.6 d (MihJ57a) others (HandT55b» WilkG50a, ButeF49, AntoN58, HolloJ59) A EC, p (weak), no (HandT55b) no p” (HolloJ59, OfeS59a) -70 (MTW) A chem, excit (HandTSSb) chem, genet energy levels (MihJ57a) V Cd x-rays, 0.089 ( 17%), 0.199 (40%), 0.356 ( 13%), 0.535 (70%), 1.065 ( 12%), 1. 16 (17%, complex), 1.22 (29%), 1.42 (15%), 1.65 (5%), 1.85 (4%) Eu^®^(a,n) (HansP59. OfeS59a, WilkC50a) Cd^^^(p.n) (WilkC50c) e 0.039, 0.081, 0.087, 0.149 5.5 h (MihJ57, HandT55b) 5.0 h (WilkGSOa) ■ IT (MihJ57, MihJ57a) EC, <25% (WilkGSOa) P (weak), no p^ (HandT55b) B chem, excit (WilkGSOa, HandTSSb) chem, sep isotopes (MihJ57) chem, mass spect (TotK60) V e [Tb L X-rays, Tb K X-rays (weak), 0.088 (weak)] 0.036, 0.081 daughter radiations from Tb^^^ Gd^^^(p,n) (HandTSSb, MihJ57) A -70 (LHP, MTW) Tb'57 1. 5 X 10^ y sp act (Fujl64) 3 X 10^ y sp act (GrigE64) others (IwaS63) A EC (BhaM62, FujI64, IwaS63) -70.71 (MTW) A chem, mass spect (NauRSOa, TotK60a) chem, sep isotopes, cross bomb (BhaM62) daughter Dy^^^ (IwaS63, Fujl64) Y Gd X-rays Dy^^^(n, V)Dy^^'^(EC) (NauR60a, BhaM62) Cd^^^(p.n) (BhaM62) Cd'^^(a.3n)Dy^^^(p") (IwaS63, Fujl64) Tbl58 1.2 X 10^ -/ (LewisH61) Others (TotK60a, HandT55b, GovN58) A EC 86%, p“ 14%, no p’*', lim 2% (BhaM62) -69.43 (MTW) A chem (ButeFfiO) chem, mass spect (NauR60a) chem, cross bomb, sep isotopes (BhaM62) p" e V 0.85 max 0.029, 0.044, 0.072, 0.078, 0.092, 0.132 Gd X-rays, 0.080 (12%). 0.182 (10%), 0.782 ( 10%), 0.95 (69%, doublet), 1.110 (2.2%), 1.190 (1.8%) Dy^^^(n.’y)Dy^^'^(EC) Tb^^^Vn. V) (NauR60a, BhaM62, LewisH61, NauR62) T^lSSm 10.5 s (SchmW65, GovN58) n.O s (HammC57) iO.2 s (BroaK65) others (HandT55b, P001M38) A IT (HandTSSb) no p (lim 0.6%), no p^ (lim 0.04%), no EC. (lim 1.5%) (SchmW65) -69.32 (LHP, MTW) C excit (GovN58, HammC57) e Y 0.060, 0.102 Tb X-rays, 0.110 (0.5%) Tb^^’(n, 2n) (SchmW65) Tb^^’(V,n) (CovN58, HammC57) tj /2 >5 X 10^^ y % 100 (HessD48, CollT57) sp act (PorsW54) A -69.53 (MTW) (T C 46 (ColdmDT64) Tb'^° 72. 1 d (HoffD63) 72.3 d (KreK54) 73.0 d (ThirH57) others (BotW46a, BursS50, SmiRR56, IngM47c, KriN48, CorkJ50e, CorkJ48a) A (T c p” (BotW43) no EC(K). lim 0.5% (ClarM57) -67.85 (LHP, MTW) 525 (ColdmDT64) A n-capt (BotW43) mass spect (IngM47c) chem (FolR51) e Y 1.74 max (0.4%), 0.86 max 0.033, 0.079, 0.085 Dy X-rays, 0.087 ( 12%), 0.197 (6%), 0.299 (30%), 0.879 (31%), 0.966 (31%, complex), 1.178 (15%), 1.272 (7%) Tb'^^(n,V) (BotW43, BotW46a, SerL47b) Tbl^^ 6.9d (Hof£D63, BisA56) 6.8 d (ButeF4 9, SmiRR56) 7.2 d (BaranS58, FunL64, HeiR50, CorkJ56a) others (CorkJ52c, BarlR55a) A p“ (KriN48) -67.47 (MTW) A excit (KriN48) chem, excit (KetB49c) genet energy levels (CorkJ56a, SmiW56b) daughter Cd^^^ (KetB49c) P" e 0.59 max (10%), 0.52 max 0.017, 0.040, 0.048 Dy X-rays, 0.026 (21%), 0.049 (19%), 0.057 ( 5%), 0.075 (10%) Gd (n, Y) Gd (P ) (KetB49b, KetB49c) Tb'^^ 7.48 m (SchnT65) A [p"] (SchnT65) -65 (MTW) B genet energy levels, excit (SchnT65) Y Dy X-rays, 0.040 (t 17). 0.081 (t 8), 0. 140 (t 6), 0. 180 (T 26), 0.258 (t 100), 0.81 (t 44), 0.89 (T 54) Dy^^^(n,p) (SchnT65) e [0.027, 0.072] Tb'^^ 2.24 h (SchnT65) 2 h (FalK57) A [p'l (FalK57) -65 (MTW) C chem, excit, sep isotopes (FalK57) Cd^^°(a, pn) (FalK57) Tb'^2 6.5 h (AlsJ60, TakaK62) others (FalK57) A p” (TakaK62) -64.7 (MTW) B chem, excit (fission yield) (Alsj60) sep isotopes (TakaK62) Y 1.65 max Dy X-rays, 0.025, 0.235, 0.330, 0.510 Cd^^°(a, p) (FalK57) Dy^^^(V.p) (TakaK62) high energy fission (AlsJ60) Tb'^^ 7 m (WilleR60) [p“] (WilleR60) E sep isotopes, excit ( WilleR60) possibly identical to 7.5 m Tb'^^ Y 0. 18 Dy‘^^(n, p) (WilleRbO) ^^162, 163 14 m (ButeFSO) F excit (ButeFSO) gammas on Dy (ButeFSO) 321 / A Half-life r~ Type of decay ( y ); % abundance; Mass excess (A=M-A), MeV (C -O); Thermal neutron Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production cross section (C7), barns 23 h (AUJ60) — ' V A [p"] (Alsj60) -62 (MTW) D chem, excit (fission yield) (AlsJfiO) high energy fission (AlsJ60) 10-20 m (TotK59, TotK58a) V EC (TotK58a, TotK59) C excit, genet (TotK59, TotK58a) Pr*‘^*(N*‘*, 6n) (TotK59, TotK58a) parent Tb*^^ (TotK59) Dy‘^“ 7. i m (MacfR64) 8 m (TotK59) 7 m (RasJ53) M A EC, p'*, a (TotK59) EC-tp'* 82%, Q 18% (MacfR64) -69 (MTW) c cross bomb (RasJ53) excit (TotK5 9) 1 fiO daughter Ho (MacfR63) daughter Er^^^ (MacfR63) Y a Tb x-rays, 0.39, 0.511 (V*) 4.23 daughter radiations from Tb^^^ 14 1 14 Pr (N, 5n) (TotK59) Ce‘^°(0*^, 6n) (MacfR64) 159 Tb^^^(p, lOn) (RasJ53) Dy‘®‘ 18.0 m (MacfR64) 19 m (TotK59, RasJ53) A p"* -3 EC 94%, Q 6% (MacfR64) -69 (MTW) B cross bomb (RasJ53) excit (TotK5 9) daughter 35.6 s Ho^^^ (MacfR63) a Y 4.06 Tb X-rays, 0.145, 0.511 (Y^*) daughter radiations from Tb 14 1 14 Pr (N ,4n) (TotK59) _ 140, _16., Ce (O, 5n) (MacfR64) Tb*^^(p, 9n) (RasJ53) n ‘52 Dy 2.41 h (SiiA62) 2.3 h (MacfR64, Ra8j53, SurY57, BasiA60a) 2.5 h (TotK58a) A EC, p'* (? ), a (RasJ53, TotK59) Q 0.05% (Mac£R64) -70.11 (MTW) A chem, excit (RasJ53, TotKSSa) chem, genet (BasiAbOa) parent 18 h Tb^^^ (BasiAbOa) daughter 52.35 (Mac£R63) Y a Tb X-rays, 0.257, 0.511 ? (Y"*") 3.65 daughter radiations from 18 h Tb*5^ 14 1 14 Pr (N. 3n) (TotK59) Gd*^^(a, 4n) (TotK58a, Mac£R64) ‘53 Dy 6.4 h (MacfR64) 5. 5 h (RydH62) 5.0 h (TotK58a) 6.4 h (DzhB6la) others (DobA58, GoroG57a) A EC, Q 0.0030% (MacfR64) -69.2 (MTW) A chem, excit, sep isotopes (TotKSSa) chem, mass spect, genet (DobA58) parent Tb^^^ (DobA58) Y e Tb X-rays, 0.08 (complex), [0.25 (complex)], others 0.029, 0.047. 0.072, 0.091, 0.192, 0.202 3.48 Gd*^^(a, 3n) (TotK58a, Mac£R64) daughter radiations from Tb^^^ n *54 Dy >10 y (MacfR61) V a (MacfR6l) B chem, excit (MacfRbl) a 2.85 Gd*^‘*(a,4n) (MacfR61) *1/2 act (MacfR6l) A -70.5 (MTW) not parent 21 h or 8.5 h Tb*^'^ (Mac£R61) ^ 154m Dy 13 h (TotK58a) V a (TotKSSa) B chem, excit, sep isotopes (TotKSSa) 3.37 Gd‘^^(a, 4n) (TotK58a) r. *55 Dy 10.2 h (PersL63c, PersL64a) others (MayM64, TotK58a, GoroG57a, BoncN60, DzhB58a, DobA58, MihJ57a) A EC (TotK58a) p^ 2% (PersL63c) -69 (MTW) A chem, excit (MihJ57a) chem, mass spect (DobA58) parent Tb^^^ (GoroG57a, DobA58, MayM 64) daughter Ho^^^ (DalBbOa, KalyA59, BasiAbl) Y TbX-rays, 0.227 (68%), 0.52 (8%, complex), 0.65 (5%, complex), 0.74 (4%, complex), 0.91 (5%, complex), 1.000 (6%), 1.091 (5%), 1.16 (6%. complex), 1.250 (4%), 1.39 (3%), 1.45 (4%). 1.66 (2%) Tb'^’(p, 5n) (MihJ57a, PersL64a) Gd'^^(a, 2n), Gd*^'*(a, 3n) (TotK58a) Gd'^^(o,n) (TotK61) p" 1.08 max (0.14%), 0.85 max (2%) e 0.013, 0.038, 0.057, 0.175 daughter radiations from Tb^^^ o ‘56 2l *1/2 <“> y sp act (RieW 58) % A 0.0524 (IngM48d) 0.057 (CollT57) -70.9 (MTW) 0" c =3 (GoldmDT64) n *57 Dy 8. 1 h (PersL63b) 8.2 h (MayM64, HandT53. RayG63) others (DobA58, GoroG57a) A EC, no p'* (HandT53) -70 (MTW) A chem, excit (HandT53) chem, sep isotopes (TotKbl) chem, mass spect (DobA58) parent Tb^^^ (IwaS63, Fujl64) Y e Tb X-rays, 0.326 ( 91%) 0.009, 0.031, 0.052, 0.074, 0.274 Tb‘^’(p, In) (HandT ., PoriL63b) Gd*^‘*(a,n) (ToiK61) n ‘58 2s % 0.0902 (IngM48d) 0.100 (CollT57) A -70.37 (MTW) (T C 100 (GoldmDT64) ‘59 Dy 144 d (KetB59) 151 d (HoffD63) 138 d (RayG63, MayM 64) others (ButeFSla, KetB49, BjoS61, GrigE60a) A EC (KetB49) -69.15 (MTW) A chem, n-capt (KetB49) chem, cross bomb (ButeFSla; genet energy levels (MihJ57a) 1 y 1_ TbX-rays, 0.058 (4%), 0.148 (9 X 10"'*%) 0.006, 0.04 9, 0,056 Dy * *'(n, 1 • ( 1.1 !■ B It. 1 4 • 1! 3 b‘ '( (J • Tb* ' p, K ■ 322 Isotope Z A Half-life Type of decay ); % abundance; Mass excess (A=M-A),MeV (C'^=0); Thermal neutron cross section ((7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production % A 2.294 (IngM48d) 2.3 5 (CollT57) -69.67 (MTW) exii' % A c 18.88 (IngM48d) -68.05 (MTW) 600 (GoldmDT64) % A 0 parent Dy (MacfR63) ^ 141,^16 _. Pr (O, 7n) (MacfR63) ry 151 Ho 35.6 s (MacfR63) • P'1 + EC 80%. a 20% (MacfR63) B excit, cross bomb, genet (MacfR63) parent Dy^^^ (MacfR63) a y 4.51 [Dy X-rays, 0.511 (V^^)] 151 daughter radiations from Dy, Tb‘^^ Pr^‘^^(0^^, 6n) (MacfR63) u 151 Ho 42 s (MacfR63) • a =30%, p"^ + EC =70% (MacfR64) C excit, cross bomb (MacfR63) y 4.60 [Dy X-rays, 0.511 (V*)] daughter radiations from Dy^^\ Tb'"^ 0^^ on Nd'“^^ (MacfR63) „ 152 Ho 52.3 s (MacfR63) [EC-lp'^] 81%, a 19% (MacfR63) B excit, genet (MacfR63) parent Dy^^^ (MacfR63) a 4.45 „ 141,^16., Pr (O, 5n) (MacfR63) 323 U.i»pc Half life /. A Type of decay ); % abundance; Mass excess (A=M-A),McV (C”=0); Thermal neutron cross section {(J), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of produaion Ho'^“ 2 •» m (MacfR63) *4 m (RasJ53) I m (MayM64) 7 m (LagP66) Ho*®® i 50 m (LagP65, KalyA59) 46 m (DalBbOa) Ho*®® I 55 m (LagP56, I BasiAfil) I 57 m (Grig£60d) ! others (MihJ57a) Ho*®^ 14 m (LagP66) Ho*®® i 11.5 m (SchepH62) 11m (StenT65a) Ho*®®'" '< 29 m (SchepH62) I 27 m (DneI60, j GromKfila) I 22 m (LagP66) I others (BasiAfii, I BoncNfila) 159 159m 160 33 m ( LagP66, TotK58) 35 m (MayM64) 6. 9 s ( BorgJ66) 25.6 m (StenT65, StenT65a) 28 m (TotK58. MayM 64) 22.5 m (WilkGSOa) ==33 m (GoroG57a) =22 m (HandT54a) [EC+p"*] =70%, (MacfR63) -63.8 (MTW) =30% [EC+p'*], Q 0.3% (MacfR63) -65.0 (MTW) [q] (MayM 64) p'*. Leg] (LagP66) -65 (MTW) [EC], p"* (KalyA59) [EC] (MihJ57a) P'* (GrigE60d) p*", [EC] (LagP66) EC, no p, lim 10% (SchepH62) -66.33 (MTW) IT (AbdurA6l, GromK6la) [EC], p'* (BoncN61a) -66.26 (LHP, MTW) EC (TotK58) -67 (MTW) IT (BorgJ66) -67 (LHP, MTW) EC 99+%, p =0.4% (GrigE59d) others (WilkGSOa) -66.4 (MTW) excit (RasJ53) excit, cross bomb (MacfR63, MacfR64b) daughter (MacfR63a) excit (Mac£R63) genet (MayM64) 145 ancestor Eu (MayM 64) chem, mass spect (LagP66) chem, genet (KalyA59, DalB60a, BasiA6l) mass spect (LagP66) parent Dy^^^ (DalB60a, KalyA59, BasiA61) chem, sep isotopes (MihJ57a) chem, mass spect (LagP66) [chem], mass spect (LagP66) chem (Dnel60) chem, excit (SchepH62) chem, genet (StenT65a) daughter (StenT65a) chem (Dnel60) chem, excit (SchepH62) mass spect (LagP66) daughter Er^^^ (GromK6la, BoncN61a, AbdurA6l) parent Ho^^® (StenT65a) chem, excit (TotK58) chem, sep isotopes (MayM64) 1 *^9 daughter Er (AbdurA6la) excit ene sep isotopes, genet V Jrgy levels (Borgj66) excit (WilkGSOc) chem (HandT54a) chem, sep isotopes, excit (MayM 64) daughter Ho (GrigE62b) not daughter Er^^^, lim 5% {DzhB63e) 3.92 Pr*“^*(0*®, 5n) (MacfR63) „ 141 ,_16 ,. Pr (O, 4n) (MacfR63) protons on Dy (MayM64) [Dy X-rays], 0.335, 0.511 CY ) protons on Dy (LagP66) 2. 1 max Dy X-rays, 0.092, 0.138, 0.511 (Y^) i protons on Dy, Ho j (LagP66) daughter radiations from Dy 155 [Tb x-rays], 0.138 (t 100), 0.266 Dy (T 99), 0.367 (t 23), 0.511 (y'*'),' 0.685, 0.89, 1.20, 1.41, 0.084, 0.130, 0.213 2. 9 max (t 1), 1.8 max (t 18) 156 (p,n) (MihJ57a) Dy X-rays, 0.087, 0.152, 0.190, 0.227, 0.511 ('y'*'), 0.71, 0.86, 0.90, 1.20 daughter radiations from Dy 157 Dy X-rays, 0.099, 0.218, 0.329, 0.412, 0.52, 0.647, 0.73, 0.86, 0.940, 1.21, 1.47, 1.6, 1.8, 2.05, 2.21, 2.87, 3.1 0.045, 0.062, 0.091, 0.097, 0. 164 Dy X-rays, Ho L X-rays, 0.099, 0.218, 0.32 (complex), 0.356, 0.412, 0.46 (complex), 0.52, 0.63 (complex), 0.73 (complex), 0.85 (complex), 0.95 (complex), 1.21, 1.47, 1.60, 1.80, 2.06, 2.20, 2.62 protons on Dy, Ho (LagP66) Tb*®^(Q, 5n) (SchepH62) Tb*®®(o, 5n) (SchepH62) 0.029, 0.044, 0.132 0.072, 0.078, 0.092, daughter radiations from Ho included in above listing Dy X-rays, 0.057, 0.080, 0.13, 0.18 (complex?), 0.253, 0.309 [0.026], 0.048, 0.071, 0.121, 0.198, 0.243, 0.256, 0.300 Ho X-rays, 0.206 150. 0.197 Tb*®®(Q,4n) (TotK58) Dy*®®(p, 2n) (M.'yMb4: 1 C. Q daughter Er (AbdurA6h. L. Tr'. Dy*®®(p, .i.) iBo. +Jl' see radiations of Ho I60m dr Mght* r Ho (Crigr ^ * '(a. Tb r>lK prot. 373-062 0 - 70 - 22 324 Isotope Z A Half-life Type of decay (^* ); % abundance; Mass excess (A5M-A),MeV (C”=0); Thermal neutron cross section (O'), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production „ I60m 67«° 5.0 h (StenT65, NerW55, MihJ57, HandT 54a, RayG63) 4.8 h (GrigE60a) 4.6 h (WilkG50a) 5.3 h (DzhB57) others (DzhB57g) A IT 66%, EC+p'*' 34% (NDS) P"^ =0.1% (GrigE59d) -66.3 (LHP, MT'W) A chem, genet (NerW55) chem, sep isotopes (MihJ57) chem, excit, sep isotopes (MayM 64) daughter Er (NerW55) parent Ho^^^ (GrigE62b) y e Dy x-ray, 0.087 (14%), 0.197 (20%), 0.53 9 (5%), 0.646 (20%), 0.729 ( 50%), 0.880 (26%), 0.965 (37%, complex), others to 2.8 0.033, 0.051, 0.058, 0.079, 0.085, 0.144, 0.188 Tb^^^(a, 3n) (TotK58, TotK59a, WilkG50a) daughter Er^^*^ (BjoS61, RayG63, NerW55, GrigE62b) protons on Dy (MayM64) L 9 max daughter radiations from Ho"^ included in above listing 2.4 h (DneI58) 2. 5 h (RayG63, HandT54a, HandT54) others (BjoS61, BasiA61, WilkG50c) A EC (HandT54a, HandT54) -67 (MTW) A chem, genet, excit (HandT54a, HandT54) daughter Er^^^ (HandT54, HandT54a) y e Dy x-rays, 0.026 (23%), 0.075 (15%), 0.157 (1%), 0.176 (2%) 0.017, 0.024, 0.049, 0.069, 0.076 Tb^^’(a, 2n) (WilkG50a) protons on Dy (MayM64) Tj Ho 6. 1 s (BorgJ66) 6.8 s (StenT65a) A IT (StenT65a, BorgJ66) -67 (LHP, MTW) A chem, genet (StenT65a, StenT65) excit, sep isotopes (BorgJ66) daughter Er^^^ (StenT65a, StenT65) y € Ho X-rays, 0.211 (53%) 0.155, 0.202 j IT 161 daughter Er (StenT65a, StenT65) Dy^^^(p, 2n) (BorgJ66) „ 162 Ho 15 m (StenT65, StenT65a) 12m ( JorM 6 1 ) A EC 95%, p"^ 5% (JorM61) -66.02 (MTW) A genet (JorM6l) chem, genet (StenT65, StenT65a) daughter Ho (JorM6l, StenT65, StenT65a) y e Dy x-rays, 0.081 (8%), 0.511 (9%, Y*) 1. 10 max 0.027, 0.072, 0.079 j 1 -... TT 162m daughter Ho (JorM61, HarmB6l) 68 m (JorM61, MayM64) 67 m (MihJ57a) A IT 63%, EC 37% ( JorM61) -65.92 (LHP, MTW) A chem, sep isotopes (MihJ57a) chem, mass spect (JorM6l) others (HandT54a, WilkG50a) parent Ho^^^ (JorM6l, StenT65, StenT65a) y e Ho X-rays, Dy X-rays, 0.081 ( 10%). 0. 185 ( 26%), 0.283 ( 12%), 0.940 ( 13%), 1.224 (24%) 0.027, 0.036, 0.048, 0.072, 0.079, 0.131, 0.177 Tb^^^(a,n) (JorM61) protons on Dy (MayM64) daughter radiations from Ho^^^ „ 163 Ho ^10^ y sp act (NauR60) others (BjoS6l) A -66.35 (MTW) A chem, mass spect (NauR60) Er^^^(n,Y)Er^^^(EC) (NauR60) „ I63m Ho 1.1s (Borgj66) 0.8 s (HammC57) A IT (GovN58) -66.05 {LHP, MTW) B excit (GovN58) excit, sep isotopes (BorgJ66) y e Ho X-rays, 0.305 0.249, 0.296 Ho^^^CY, 2n) {HammC57, GovN58) o 164 Ho 36.7 m {BrowHN54) 34.0 m (WilkG50a) 41.5 m (WafH50) 47 m (PoolM38a) others (HandT54a) A p" 53%, EC 47%, no p'^, lim 0.05% (BrowHN54) -64.84 (MTW) A excit (PoolM38a) . p e y 0. 99 max 0.019, 0.034, 0.065, 0.071, 0.083, 0.089 Dy, Er X-rays, 0.073, 0.091 protons on Dy (WilkG50a, MihJ57a) Ho^^^(Y,n) (WafH48, BrowHN54) Ho^^^(n. 2n) (PoolM38a, WafHSO) TT 165 Ho ’^l-/2 ^ ^ % 100 (LelW50, CollT57) act (PorsW54) A (7 C -64.81 (MTW) 64 (to Ho^^^) , ,, 166m. = 1 (to Ho ) (GoldmDT64) „ 166 Ho 26.9 h (GranP49, CorkJ58) 27.0 h (HoffD63) others (FunL63, IngM47, BotW46a, AntoN50, AntoN50a, KetB4 9b, CorkJ4 9b) A p" (HevG36) -63.07 (MTW) A n— capt (HevG36) mass spect (IngM47) chem (KetB49b) daughter Dy^^^ (KetB49, ButeF50a) P" e y 1.84 max 0.023, 0.072, 0.078 Er X-rays, 0.081 (5.4%), 1.380 (0.9%), 1.582(0.20%), 1.663 (0. 10%) Ho^^^(n,V) (HevG36, PoolM38a, MeiL40, SerL47b) daughter Dy^^^ (KetB49, ButeF50a, HoffD63) 166m Ho 1.2 X 10^ y sp act, mass spect (FalK65) others (ButeF52) A (ButeF52) -63.06 (LHP, MTW) A chem, excit (ButeF52) chem, genet energy levels (MiltJ55) p" e y [0.07 max] 0.023, 0.072, 0.078, 0,127, 0.175 Er X-rays, 0.081 (12%), 0.184 (90%), 0.280 (30%), 0.412 (12%), 0.532 ( 12%), 0.711 (58%), 0.810 (60%), 0.830 (11%), others to 1.43 Ho^^®(n, V) (ButeF52) 167 Ho 3. 1 h (WilleR60) 3.0 h (HandT55) A p" (HandT55) -62.3 (MTW) A chem, excit (HandT55) genet energy levels (HarmB62) p" e 0. 96 max 0.024, 0.048. 0.073, 0.150, 0.180, 0,199, 0.263 Er'^®(p,Q) (HandT55) Er‘^^(n, p) (WilleR60, HandT55) V Er x-rays, [0.079, 0.083, 0.208, 0.238, 0.321, 0.348, 0.387] 325 *’*’'»)» Half life / A Type of decay ( ); % abundance; Mass excess (A=M-A),McV (C'-O); Thermal neutron cross section (C7), barns Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities Principal means of production J 1 m (WilleRbO) J S m (TakaK61) Ho*®’ .4 8 m (MiyK63) Ho 45 • (TakaK6l) 40 a (WilIeR60) 68 Er*®^ 10.7 a (MacfR63a) Er*®^ I 36 s (MacfR63a) Er*®** 5 m (MacfR63a) Er*®^ »25 m (I^gP66) GromK61a) 2.4 h (DneI60) 2.5 h (BoncN61a) Er*®’ I 36 m (LagP66) 1 h (AbdurA61a) Er 160 161 162 Er 163 75.1 m (PersL63d) others (HandT53a, BjoS61, StenT65) 29.4 h (NerW55) 28.7 h (BjoS61) 29.5 h (RayG63) others (MicM54, DzhB57, GoroG57a, LagP66) 3. 1 h (NerW55, RayG63, GrenHbl) 3.2 h (BjoS61. GromK61a, DneI60a) others (HandT54, MicM54) p TakaK61) -59.7 (MTW) p" (MiyK63) -58.8 (MTW) (ButeFSO) P (TakaK61) -55.8 (MTW) a =90%, [EC+p"*] = 10% (MacfR63a) Q >75%, EC+p'^ <25% (MacfR63a) a (MacfR63a) -63 fMTW) P"*, [EC] (LagP66)